基于参数辨识和输出耦合的混合时变时滞神经网络同步

Xiaozheng Mou, Wuneng Zhou, Lin Pan, Tianbo Wang
{"title":"基于参数辨识和输出耦合的混合时变时滞神经网络同步","authors":"Xiaozheng Mou, Wuneng Zhou, Lin Pan, Tianbo Wang","doi":"10.1109/IWISA.2009.5073152","DOIUrl":null,"url":null,"abstract":"This paper aims to investigate the global robust synchronization problem for two coupled neural networks with both discrete and distributed time-varying delays via output coupling. A general and novel time-varying delayed feedback scheme is introduced to model a more realistic controller. By employing the Lyapunov stability theory, several new and less restrictive criterions are obtained to guarantee that the two coupled chaotic neural networks can achieve synchronization. In addition, each adapted parameter in the connection weights can be identified through the theoretical results. Numerical simulations are given to validate the usefulness of the proposed global synchronization conditions.","PeriodicalId":6327,"journal":{"name":"2009 International Workshop on Intelligent Systems and Applications","volume":"24 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synchronization of Neural Networks with Mixed Time-Varying Delays Based on Parameter Identification and via Output Coupling\",\"authors\":\"Xiaozheng Mou, Wuneng Zhou, Lin Pan, Tianbo Wang\",\"doi\":\"10.1109/IWISA.2009.5073152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper aims to investigate the global robust synchronization problem for two coupled neural networks with both discrete and distributed time-varying delays via output coupling. A general and novel time-varying delayed feedback scheme is introduced to model a more realistic controller. By employing the Lyapunov stability theory, several new and less restrictive criterions are obtained to guarantee that the two coupled chaotic neural networks can achieve synchronization. In addition, each adapted parameter in the connection weights can be identified through the theoretical results. Numerical simulations are given to validate the usefulness of the proposed global synchronization conditions.\",\"PeriodicalId\":6327,\"journal\":{\"name\":\"2009 International Workshop on Intelligent Systems and Applications\",\"volume\":\"24 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Workshop on Intelligent Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWISA.2009.5073152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Workshop on Intelligent Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWISA.2009.5073152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了离散时变时滞和分布时变时滞两个耦合神经网络的输出耦合全局鲁棒同步问题。引入了一种通用的、新颖的时变延迟反馈方案,以建立更真实的控制器模型。利用李雅普诺夫稳定性理论,给出了保证两个耦合混沌神经网络能够实现同步的几个新的、约束较少的判据。此外,还可以通过理论结果识别出连接权值中的各个自适应参数。数值仿真验证了所提出的全局同步条件的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synchronization of Neural Networks with Mixed Time-Varying Delays Based on Parameter Identification and via Output Coupling
This paper aims to investigate the global robust synchronization problem for two coupled neural networks with both discrete and distributed time-varying delays via output coupling. A general and novel time-varying delayed feedback scheme is introduced to model a more realistic controller. By employing the Lyapunov stability theory, several new and less restrictive criterions are obtained to guarantee that the two coupled chaotic neural networks can achieve synchronization. In addition, each adapted parameter in the connection weights can be identified through the theoretical results. Numerical simulations are given to validate the usefulness of the proposed global synchronization conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intelligent Systems and Applications: Select Proceedings of ICISA 2022 Selecting Accurate Classifier Models for a MERS-CoV Dataset A Method of Same Frequency Interference Elimination Based on Adaptive Notch Filter Research on Work-in-Progress Control System of Integrating PI and SPC Study on A Novel Fuzzy PLL and Its Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1