面向大数据优化的增强束状虫群算法

Emine Baş
{"title":"面向大数据优化的增强束状虫群算法","authors":"Emine Baş","doi":"10.16984/saufenbilder.1195700","DOIUrl":null,"url":null,"abstract":"Today, with the increasing use of technology tools in daily life, big data has gained even more importance. In recent years, many methods have been used to interpret big data. One of them is metaheuristic algorithms. Meta-heuristic methods, which have been used by very few researchers yet, have become increasingly common. In this study, Tunicate Swarm Algorithm (TSA), which has been newly developed in recent years, was chosen to solve big data optimization problems. The Enhanced TSA (ETSA) was obtained by first developing the swarm action of the TSA. In order to show the achievements of TSA and ETSA, various classical benchmark functions were determined from the literature. The success of ETSA has been proven on these benchmark functions. Then, the successes of TSA and ETSA are shown in detail on big datasets containing six different EEG signal data, with five different population sizes (10, 20, 30, 50, 100) and three different stopping criteria (300, 500, 1000). The results were compared with the Jaya, SOA, and SMA algorithms selected from the literature, and the success of ETSA was determined. The results show that ETSA has sufficient success in solving big data optimization problems and continuous optimization problems.","PeriodicalId":21468,"journal":{"name":"Sakarya University Journal of Science","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Enhanced Tunicate Swarm Algorithm for Big Data Optimization\",\"authors\":\"Emine Baş\",\"doi\":\"10.16984/saufenbilder.1195700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today, with the increasing use of technology tools in daily life, big data has gained even more importance. In recent years, many methods have been used to interpret big data. One of them is metaheuristic algorithms. Meta-heuristic methods, which have been used by very few researchers yet, have become increasingly common. In this study, Tunicate Swarm Algorithm (TSA), which has been newly developed in recent years, was chosen to solve big data optimization problems. The Enhanced TSA (ETSA) was obtained by first developing the swarm action of the TSA. In order to show the achievements of TSA and ETSA, various classical benchmark functions were determined from the literature. The success of ETSA has been proven on these benchmark functions. Then, the successes of TSA and ETSA are shown in detail on big datasets containing six different EEG signal data, with five different population sizes (10, 20, 30, 50, 100) and three different stopping criteria (300, 500, 1000). The results were compared with the Jaya, SOA, and SMA algorithms selected from the literature, and the success of ETSA was determined. The results show that ETSA has sufficient success in solving big data optimization problems and continuous optimization problems.\",\"PeriodicalId\":21468,\"journal\":{\"name\":\"Sakarya University Journal of Science\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sakarya University Journal of Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.16984/saufenbilder.1195700\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sakarya University Journal of Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.16984/saufenbilder.1195700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

今天,随着科技工具在日常生活中的使用越来越多,大数据变得更加重要。近年来,很多方法被用来解释大数据。其中之一是元启发式算法。元启发式方法虽然很少被研究者使用,但已经变得越来越普遍。本研究选择近年来发展起来的Tunicate Swarm Algorithm (TSA)来解决大数据优化问题。增强TSA (Enhanced TSA, ETSA)是通过首次开发TSA的群体作用得到的。为了展示TSA和ETSA的成果,从文献中确定了各种经典基准函数。ETSA的成功已经在这些基准函数上得到了证明。然后,在包含6种不同脑电信号数据、5种不同人口规模(10、20、30、50、100)和3种不同停止标准(300、500、1000)的大数据集上,详细展示了TSA和ETSA的成功。将结果与文献中选择的Jaya、SOA和SMA算法进行比较,确定ETSA的成功。结果表明,ETSA在解决大数据优化问题和连续优化问题方面取得了足够的成功。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced Tunicate Swarm Algorithm for Big Data Optimization
Today, with the increasing use of technology tools in daily life, big data has gained even more importance. In recent years, many methods have been used to interpret big data. One of them is metaheuristic algorithms. Meta-heuristic methods, which have been used by very few researchers yet, have become increasingly common. In this study, Tunicate Swarm Algorithm (TSA), which has been newly developed in recent years, was chosen to solve big data optimization problems. The Enhanced TSA (ETSA) was obtained by first developing the swarm action of the TSA. In order to show the achievements of TSA and ETSA, various classical benchmark functions were determined from the literature. The success of ETSA has been proven on these benchmark functions. Then, the successes of TSA and ETSA are shown in detail on big datasets containing six different EEG signal data, with five different population sizes (10, 20, 30, 50, 100) and three different stopping criteria (300, 500, 1000). The results were compared with the Jaya, SOA, and SMA algorithms selected from the literature, and the success of ETSA was determined. The results show that ETSA has sufficient success in solving big data optimization problems and continuous optimization problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Detailed Comparison of Two New Heuristic Algorithms Based on Gazelles Behavior Determination of Pesticide Residues in Water Using Extraction Method Developing an optimization model for minimizing solid waste collection costs Fractal Approach to Dielectric Properties of Single Walled Carbon Nanotubes Reinforced Polymer Composites Evaluation of the Antigenotoxic Effect of Quercetin Against Antiepileptic Drug Genotoxicity by Comet Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1