基于物联网边缘设备的植物病害分类轻量级DCNN模型

Mendel Pub Date : 2022-12-20 DOI:10.13164/mendel.2022.2.041
H. T. Minh, T. P. Anh, Van Nguyen Nhan
{"title":"基于物联网边缘设备的植物病害分类轻量级DCNN模型","authors":"H. T. Minh, T. P. Anh, Van Nguyen Nhan","doi":"10.13164/mendel.2022.2.041","DOIUrl":null,"url":null,"abstract":"One of the essential aspects of smart farming and precision agriculture is quickly and accurately identifying diseases. Utilizing plant imaging and recently developed machine learning algorithms, the timely detection of diseases provides many benefits to farmers regarding crop and product quality. Specifically, for farmers in remote areas, disease diagnostics on edge devices is the most effective and optimal method to handle crop damage as quickly as possible. However, the limitations posed by the equipment’s limited resources have reduced the accuracy of disease detection. Consequently, adopting an efficient machine-learning model and decreasing the model size to fit the edge device is an exciting problem that receives significant attention from researchers and developers. This work takes advantage of previous research on deep learning model performance evaluation to present a model that applies to both the Plant-Village laboratory dataset and the Plant-Doc natural-type dataset. The evaluation results indicate that the proposed model is as effective as the current state-of-the-art model. Moreover, due to the quantization technique, the system performance stays the same when the model size is reduced to accommodate the edge device.","PeriodicalId":38293,"journal":{"name":"Mendel","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Novel Light-Weight DCNN Model for Classifying Plant Diseases on Internet of Things Edge Devices\",\"authors\":\"H. T. Minh, T. P. Anh, Van Nguyen Nhan\",\"doi\":\"10.13164/mendel.2022.2.041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the essential aspects of smart farming and precision agriculture is quickly and accurately identifying diseases. Utilizing plant imaging and recently developed machine learning algorithms, the timely detection of diseases provides many benefits to farmers regarding crop and product quality. Specifically, for farmers in remote areas, disease diagnostics on edge devices is the most effective and optimal method to handle crop damage as quickly as possible. However, the limitations posed by the equipment’s limited resources have reduced the accuracy of disease detection. Consequently, adopting an efficient machine-learning model and decreasing the model size to fit the edge device is an exciting problem that receives significant attention from researchers and developers. This work takes advantage of previous research on deep learning model performance evaluation to present a model that applies to both the Plant-Village laboratory dataset and the Plant-Doc natural-type dataset. The evaluation results indicate that the proposed model is as effective as the current state-of-the-art model. Moreover, due to the quantization technique, the system performance stays the same when the model size is reduced to accommodate the edge device.\",\"PeriodicalId\":38293,\"journal\":{\"name\":\"Mendel\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mendel\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13164/mendel.2022.2.041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mendel","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13164/mendel.2022.2.041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

智能农业和精准农业的一个重要方面是快速准确地识别疾病。利用植物成像和最近开发的机器学习算法,及时检测疾病为农民提供了许多关于作物和产品质量的好处。具体来说,对于偏远地区的农民来说,边缘设备上的疾病诊断是尽快处理作物损害的最有效和最佳方法。然而,设备资源有限造成的限制降低了疾病检测的准确性。因此,采用高效的机器学习模型并减小模型尺寸以适应边缘设备是一个令人兴奋的问题,受到了研究人员和开发人员的极大关注。这项工作利用了先前对深度学习模型性能评估的研究,提出了一个既适用于Plant-Village实验室数据集又适用于Plant-Doc自然类型数据集的模型。评价结果表明,该模型与目前最先进的模型一样有效。此外,由于量化技术,当模型尺寸减小以容纳边缘器件时,系统性能保持不变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Light-Weight DCNN Model for Classifying Plant Diseases on Internet of Things Edge Devices
One of the essential aspects of smart farming and precision agriculture is quickly and accurately identifying diseases. Utilizing plant imaging and recently developed machine learning algorithms, the timely detection of diseases provides many benefits to farmers regarding crop and product quality. Specifically, for farmers in remote areas, disease diagnostics on edge devices is the most effective and optimal method to handle crop damage as quickly as possible. However, the limitations posed by the equipment’s limited resources have reduced the accuracy of disease detection. Consequently, adopting an efficient machine-learning model and decreasing the model size to fit the edge device is an exciting problem that receives significant attention from researchers and developers. This work takes advantage of previous research on deep learning model performance evaluation to present a model that applies to both the Plant-Village laboratory dataset and the Plant-Doc natural-type dataset. The evaluation results indicate that the proposed model is as effective as the current state-of-the-art model. Moreover, due to the quantization technique, the system performance stays the same when the model size is reduced to accommodate the edge device.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mendel
Mendel Decision Sciences-Decision Sciences (miscellaneous)
CiteScore
2.20
自引率
0.00%
发文量
7
期刊最新文献
Detecting Outliers Using Modified Recursive PCA Algorithm For Dynamic Streaming Data Stock and Structured Warrant Portfolio Optimization Using Black-Litterman Model and Binomial Method Optimized Fixed-Time Synergetic Controller via a modified Salp Swarm Algorithm for Acute and Chronic HBV Transmission System Initial Coin Offering Prediction Comparison Using Ridge Regression, Artificial Neural Network, Random Forest Regression, and Hybrid ANN-Ridge Predicting Football Match Outcomes with Machine Learning Approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1