大规模在线实验中退出购买者的聚类插值

Sumin Shen, Huiying Mao, Zezhong Zhang, Zili Chen, Keyu Nie, Xinwei Deng
{"title":"大规模在线实验中退出购买者的聚类插值","authors":"Sumin Shen, Huiying Mao, Zezhong Zhang, Zili Chen, Keyu Nie, Xinwei Deng","doi":"10.51387/23-nejsds33","DOIUrl":null,"url":null,"abstract":"In online experimentation, appropriate metrics (e.g., purchase) provide strong evidence to support hypotheses and enhance the decision-making process. However, incomplete metrics are frequently occurred in the online experimentation, making the available data to be much fewer than the planned online experiments (e.g., A/B testing). In this work, we introduce the concept of dropout buyers and categorize users with incomplete metric values into two groups: visitors and dropout buyers. For the analysis of incomplete metrics, we propose a clustering-based imputation method using k-nearest neighbors. Our proposed imputation method considers both the experiment-specific features and users’ activities along their shopping paths, allowing different imputation values for different users. To facilitate efficient imputation of large-scale data sets in online experimentation, the proposed method uses a combination of stratification and clustering. The performance of the proposed method is compared to several conventional methods in both simulation studies and a real online experiment at eBay.","PeriodicalId":94360,"journal":{"name":"The New England Journal of Statistics in Data Science","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Clustering-Based Imputation for Dropout Buyers in Large-Scale Online Experimentation\",\"authors\":\"Sumin Shen, Huiying Mao, Zezhong Zhang, Zili Chen, Keyu Nie, Xinwei Deng\",\"doi\":\"10.51387/23-nejsds33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In online experimentation, appropriate metrics (e.g., purchase) provide strong evidence to support hypotheses and enhance the decision-making process. However, incomplete metrics are frequently occurred in the online experimentation, making the available data to be much fewer than the planned online experiments (e.g., A/B testing). In this work, we introduce the concept of dropout buyers and categorize users with incomplete metric values into two groups: visitors and dropout buyers. For the analysis of incomplete metrics, we propose a clustering-based imputation method using k-nearest neighbors. Our proposed imputation method considers both the experiment-specific features and users’ activities along their shopping paths, allowing different imputation values for different users. To facilitate efficient imputation of large-scale data sets in online experimentation, the proposed method uses a combination of stratification and clustering. The performance of the proposed method is compared to several conventional methods in both simulation studies and a real online experiment at eBay.\",\"PeriodicalId\":94360,\"journal\":{\"name\":\"The New England Journal of Statistics in Data Science\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The New England Journal of Statistics in Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.51387/23-nejsds33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The New England Journal of Statistics in Data Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51387/23-nejsds33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在在线实验中,适当的度量标准(例如,购买)为支持假设和增强决策过程提供了强有力的证据。然而,在线实验中经常出现不完整的度量,使得可用数据比计划的在线实验(例如,A/B测试)少得多。在这项工作中,我们引入了辍学买家的概念,并将具有不完整度量值的用户分为两组:访问者和辍学买家。对于不完全度量的分析,我们提出了一种基于聚类的k近邻插值方法。我们提出的imputation方法既考虑了实验特定的特征,也考虑了用户在购物路径上的活动,允许不同的用户使用不同的imputation值。为了方便在线实验中大规模数据集的有效输入,该方法采用分层和聚类相结合的方法。在仿真研究和eBay的实际在线实验中,将该方法的性能与几种传统方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Clustering-Based Imputation for Dropout Buyers in Large-Scale Online Experimentation
In online experimentation, appropriate metrics (e.g., purchase) provide strong evidence to support hypotheses and enhance the decision-making process. However, incomplete metrics are frequently occurred in the online experimentation, making the available data to be much fewer than the planned online experiments (e.g., A/B testing). In this work, we introduce the concept of dropout buyers and categorize users with incomplete metric values into two groups: visitors and dropout buyers. For the analysis of incomplete metrics, we propose a clustering-based imputation method using k-nearest neighbors. Our proposed imputation method considers both the experiment-specific features and users’ activities along their shopping paths, allowing different imputation values for different users. To facilitate efficient imputation of large-scale data sets in online experimentation, the proposed method uses a combination of stratification and clustering. The performance of the proposed method is compared to several conventional methods in both simulation studies and a real online experiment at eBay.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling Multivariate Spatial Dependencies Using Graphical Models. Effect of model space priors on statistical inference with model uncertainty. Bayesian Variable Selection in Double Generalized Linear Tweedie Spatial Process Models Bayesian D-Optimal Design of Experiments with Quantitative and Qualitative Responses Construction of Supersaturated Designs with Small Coherence for Variable Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1