{"title":"羟乙基纤维素-氧化铜纳米复合材料的表征及光学研究","authors":"A. Alsubaie","doi":"10.1155/2022/8422803","DOIUrl":null,"url":null,"abstract":"In this study, monometallic copper oxide nanoparticles (CuONPs) were synthesized by chemical reduction of copper sulfate (CuSO4) salt through sugar glucose. X-ray diffraction profiles approved the formation of metallic oxide nanoparticles. TEM images showed spherical nanoparticles with an average particle size of 60 nm. The interaction of HEC and copper oxide nanoparticles was investigated by FTIR spectroscopy. The UV-visible absorption spectrum showed a surface plasmon resonance peak at 270 nm. The effect of doping of copper oxide nanoparticles (CuONPs) on the optical and thermal properties of HEC was studied. The results showed that the concentration of CuO nanoparticles has a prominent influence on the optical, structural, and thermal properties of hydroxyethyl cellulose.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Characterization and Optical Studies of Hydroxyethyl Cellulose-Copper Oxide Nanocomposites\",\"authors\":\"A. Alsubaie\",\"doi\":\"10.1155/2022/8422803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, monometallic copper oxide nanoparticles (CuONPs) were synthesized by chemical reduction of copper sulfate (CuSO4) salt through sugar glucose. X-ray diffraction profiles approved the formation of metallic oxide nanoparticles. TEM images showed spherical nanoparticles with an average particle size of 60 nm. The interaction of HEC and copper oxide nanoparticles was investigated by FTIR spectroscopy. The UV-visible absorption spectrum showed a surface plasmon resonance peak at 270 nm. The effect of doping of copper oxide nanoparticles (CuONPs) on the optical and thermal properties of HEC was studied. The results showed that the concentration of CuO nanoparticles has a prominent influence on the optical, structural, and thermal properties of hydroxyethyl cellulose.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/8422803\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2022/8422803","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Characterization and Optical Studies of Hydroxyethyl Cellulose-Copper Oxide Nanocomposites
In this study, monometallic copper oxide nanoparticles (CuONPs) were synthesized by chemical reduction of copper sulfate (CuSO4) salt through sugar glucose. X-ray diffraction profiles approved the formation of metallic oxide nanoparticles. TEM images showed spherical nanoparticles with an average particle size of 60 nm. The interaction of HEC and copper oxide nanoparticles was investigated by FTIR spectroscopy. The UV-visible absorption spectrum showed a surface plasmon resonance peak at 270 nm. The effect of doping of copper oxide nanoparticles (CuONPs) on the optical and thermal properties of HEC was studied. The results showed that the concentration of CuO nanoparticles has a prominent influence on the optical, structural, and thermal properties of hydroxyethyl cellulose.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.