从横截面和时间序列信息估计债券价格的非参数模型

B. Koo, D. La Vecchia, O. Linton
{"title":"从横截面和时间序列信息估计债券价格的非参数模型","authors":"B. Koo, D. La Vecchia, O. Linton","doi":"10.2139/ssrn.3341344","DOIUrl":null,"url":null,"abstract":"We develop estimation methodology for an additive nonparametric panel model that is suitable for capturing the pricing of coupon-paying government bonds followed over many time periods. We use our model to estimate the discount function and yield curve of nominally riskless government bonds. The novelty of our approach is the combination of two different techniques: cross-sectional nonparametric methods and kernel estimation for time varying dynamics in the time series context. The resulting estimator is used for predicting individual bond prices given the full schedule of their future payments. In addition, it is able to capture the yield curve shapes and dynamics commonly observed in the fixed income markets. We establish the consistency, the rate of convergence, and the asymptotic normality of the proposed estimator. A Monte Carlo exercise illustrates the good performance of the method under different scenarios. We apply our methodology to the daily CRSP bond market dataset, and compare ours with the popular Diebold and Li (2006) method.","PeriodicalId":11744,"journal":{"name":"ERN: Nonparametric Methods (Topic)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Estimation of a Nonparametric model for Bond Prices from Cross-section and Time series Information\",\"authors\":\"B. Koo, D. La Vecchia, O. Linton\",\"doi\":\"10.2139/ssrn.3341344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop estimation methodology for an additive nonparametric panel model that is suitable for capturing the pricing of coupon-paying government bonds followed over many time periods. We use our model to estimate the discount function and yield curve of nominally riskless government bonds. The novelty of our approach is the combination of two different techniques: cross-sectional nonparametric methods and kernel estimation for time varying dynamics in the time series context. The resulting estimator is used for predicting individual bond prices given the full schedule of their future payments. In addition, it is able to capture the yield curve shapes and dynamics commonly observed in the fixed income markets. We establish the consistency, the rate of convergence, and the asymptotic normality of the proposed estimator. A Monte Carlo exercise illustrates the good performance of the method under different scenarios. We apply our methodology to the daily CRSP bond market dataset, and compare ours with the popular Diebold and Li (2006) method.\",\"PeriodicalId\":11744,\"journal\":{\"name\":\"ERN: Nonparametric Methods (Topic)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Nonparametric Methods (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3341344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Nonparametric Methods (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3341344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们开发了一种可加性非参数面板模型的估计方法,该模型适用于捕获多个时期的付息政府债券的定价。利用该模型估计了名义无风险国债的折现函数和收益率曲线。我们方法的新颖之处在于结合了两种不同的技术:横截面非参数方法和时间序列环境中时变动力学的核估计。由此产生的估计量用于预测给定其未来付款完整时间表的单个债券价格。此外,它还能够捕捉固定收益市场中常见的收益率曲线形状和动态。我们建立了该估计量的相合性、收敛速度和渐近正态性。蒙特卡罗练习说明了该方法在不同场景下的良好性能。我们将我们的方法应用于每日CRSP债券市场数据集,并将我们的方法与流行的Diebold和Li(2006)方法进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation of a Nonparametric model for Bond Prices from Cross-section and Time series Information
We develop estimation methodology for an additive nonparametric panel model that is suitable for capturing the pricing of coupon-paying government bonds followed over many time periods. We use our model to estimate the discount function and yield curve of nominally riskless government bonds. The novelty of our approach is the combination of two different techniques: cross-sectional nonparametric methods and kernel estimation for time varying dynamics in the time series context. The resulting estimator is used for predicting individual bond prices given the full schedule of their future payments. In addition, it is able to capture the yield curve shapes and dynamics commonly observed in the fixed income markets. We establish the consistency, the rate of convergence, and the asymptotic normality of the proposed estimator. A Monte Carlo exercise illustrates the good performance of the method under different scenarios. We apply our methodology to the daily CRSP bond market dataset, and compare ours with the popular Diebold and Li (2006) method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Efficient Estimation of Pricing Kernels and Market-Implied Densities Futures-Trading Activity and Jump Risk: Evidence From the Bitcoin Market Partial Identification of Discrete Instrumental Variable Models using Shape Restrictions Frequency Dependent Risk Spatial Heterogeneity in the Borrowers' Mortgage Termination Decision – a Nonparametric Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1