二维和三维计算机视觉技术更可靠的身体状况评分

Q2 Agricultural and Biological Sciences Dairy Science & Technology Pub Date : 2022-12-26 DOI:10.3390/dairy4010001
N. O’Mahony, L. Krpalkova, Gearoid Sayers, Lea Krump, Joseph Walsh, D. Riordan
{"title":"二维和三维计算机视觉技术更可靠的身体状况评分","authors":"N. O’Mahony, L. Krpalkova, Gearoid Sayers, Lea Krump, Joseph Walsh, D. Riordan","doi":"10.3390/dairy4010001","DOIUrl":null,"url":null,"abstract":"This article identifies the essential technologies and considerations for the development of an Automated Cow Monitoring System (ACMS) which uses 3D camera technology for the assessment of Body Condition Score (BCS). We present a comparison of a range of common techniques at the different developmental stages of Computer Vision including data pre-processing and the implementation of Deep Learning for both 2D and 3D data formats commonly captured by 3D cameras. This research focuses on attaining better reliability from one deployment of an ACMS to the next and proposes a Geometric Deep Learning (GDL) approach and evaluating model performance for robustness from one farm to another in the presence of background, farm, herd, camera pose and cow pose variabilities.","PeriodicalId":11001,"journal":{"name":"Dairy Science & Technology","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Two- and Three-Dimensional Computer Vision Techniques for More Reliable Body Condition Scoring\",\"authors\":\"N. O’Mahony, L. Krpalkova, Gearoid Sayers, Lea Krump, Joseph Walsh, D. Riordan\",\"doi\":\"10.3390/dairy4010001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article identifies the essential technologies and considerations for the development of an Automated Cow Monitoring System (ACMS) which uses 3D camera technology for the assessment of Body Condition Score (BCS). We present a comparison of a range of common techniques at the different developmental stages of Computer Vision including data pre-processing and the implementation of Deep Learning for both 2D and 3D data formats commonly captured by 3D cameras. This research focuses on attaining better reliability from one deployment of an ACMS to the next and proposes a Geometric Deep Learning (GDL) approach and evaluating model performance for robustness from one farm to another in the presence of background, farm, herd, camera pose and cow pose variabilities.\",\"PeriodicalId\":11001,\"journal\":{\"name\":\"Dairy Science & Technology\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dairy Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/dairy4010001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dairy Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/dairy4010001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 1

摘要

本文确定了开发自动奶牛监测系统(ACMS)的基本技术和注意事项,该系统使用3D相机技术来评估身体状况评分(BCS)。我们比较了计算机视觉不同发展阶段的一系列常用技术,包括数据预处理和3D相机通常捕获的2D和3D数据格式的深度学习实现。本研究侧重于从一个ACMS部署到下一个部署获得更好的可靠性,并提出了一种几何深度学习(GDL)方法,并在背景、农场、牛群、相机姿势和奶牛姿势变量存在的情况下评估模型在一个农场到另一个农场的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Two- and Three-Dimensional Computer Vision Techniques for More Reliable Body Condition Scoring
This article identifies the essential technologies and considerations for the development of an Automated Cow Monitoring System (ACMS) which uses 3D camera technology for the assessment of Body Condition Score (BCS). We present a comparison of a range of common techniques at the different developmental stages of Computer Vision including data pre-processing and the implementation of Deep Learning for both 2D and 3D data formats commonly captured by 3D cameras. This research focuses on attaining better reliability from one deployment of an ACMS to the next and proposes a Geometric Deep Learning (GDL) approach and evaluating model performance for robustness from one farm to another in the presence of background, farm, herd, camera pose and cow pose variabilities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Dairy Science & Technology
Dairy Science & Technology 农林科学-食品科技
CiteScore
2.30
自引率
0.00%
发文量
0
审稿时长
2 months
期刊介绍: Information not localized
期刊最新文献
Designing Selection Indices for the Florida Dairy Goat Breeding Program High Protein—Low Viscosity? How to Tailor Rheological Properties of Fermented Concentrated Milk Products Optimal Age at First Calving in Pasture-Based Dairy Systems Seasonal Study of Aflatoxin M1 Contamination in Cow Milk on the Retail Dairy Market in Gorgan, Iran Analysis of Dairy Cow Behavior during Milking Associated with Lameness
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1