{"title":"氟酰基酸铵非共调相介电常数的温度依赖性","authors":"B. Horon, O. Kushnir, P. Shchepanskyi, V. Stadnyk","doi":"10.5488/CMP.25.43704","DOIUrl":null,"url":null,"abstract":"We study the temperature dependence of dielectric permittivity along the polar axis for ferroelectric ammonium fluoroberyllate (AFB) crystal in the vicinity of its phase transition points. The experimental data within incommensurately modulated phase of AFB is compared with the predictions of phenomenological models known from the literature: the Curie-Weiss (CW) law, the generalized Curie-Weiss (GCW) law, and the models by Levanyuk and Sannikov (LS) and by Prelovšek, Levstik and Filipič (PLF) suggested for improper ferroelectrics. It is shown that the LS approach describes the temperature behavior of the dielectric permittivity for the AFB crystal better than the CW, GWC and PLF models. The main physical reasons of this situation are elucidated.","PeriodicalId":10528,"journal":{"name":"Condensed Matter Physics","volume":"31 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Temperature dependence of dielectric permittivity in incommensurately modulated phase of ammonium fluoroberyllate\",\"authors\":\"B. Horon, O. Kushnir, P. Shchepanskyi, V. Stadnyk\",\"doi\":\"10.5488/CMP.25.43704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the temperature dependence of dielectric permittivity along the polar axis for ferroelectric ammonium fluoroberyllate (AFB) crystal in the vicinity of its phase transition points. The experimental data within incommensurately modulated phase of AFB is compared with the predictions of phenomenological models known from the literature: the Curie-Weiss (CW) law, the generalized Curie-Weiss (GCW) law, and the models by Levanyuk and Sannikov (LS) and by Prelovšek, Levstik and Filipič (PLF) suggested for improper ferroelectrics. It is shown that the LS approach describes the temperature behavior of the dielectric permittivity for the AFB crystal better than the CW, GWC and PLF models. The main physical reasons of this situation are elucidated.\",\"PeriodicalId\":10528,\"journal\":{\"name\":\"Condensed Matter Physics\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Condensed Matter Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.5488/CMP.25.43704\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.5488/CMP.25.43704","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Temperature dependence of dielectric permittivity in incommensurately modulated phase of ammonium fluoroberyllate
We study the temperature dependence of dielectric permittivity along the polar axis for ferroelectric ammonium fluoroberyllate (AFB) crystal in the vicinity of its phase transition points. The experimental data within incommensurately modulated phase of AFB is compared with the predictions of phenomenological models known from the literature: the Curie-Weiss (CW) law, the generalized Curie-Weiss (GCW) law, and the models by Levanyuk and Sannikov (LS) and by Prelovšek, Levstik and Filipič (PLF) suggested for improper ferroelectrics. It is shown that the LS approach describes the temperature behavior of the dielectric permittivity for the AFB crystal better than the CW, GWC and PLF models. The main physical reasons of this situation are elucidated.
期刊介绍:
Condensed Matter Physics contains original and review articles in the field of statistical mechanics and thermodynamics of equilibrium and nonequilibrium processes, relativistic mechanics of interacting particle systems.The main attention is paid to physics of solid, liquid and amorphous systems, phase equilibria and phase transitions, thermal, structural, electric, magnetic and optical properties of condensed matter. Condensed Matter Physics is published quarterly.