{"title":"基于工作挠度形状的格子夹层结构无基线损伤识别方法","authors":"K. Feng, Qian Zhao, Zheng Li","doi":"10.1080/09349847.2021.1946224","DOIUrl":null,"url":null,"abstract":"ABSTRACT A novel baseline-free damage identification method based on high frequency operational deflection shapes (ODSs) is presented for debonding detection in lattice sandwich structures (LSSs). Two numerical models with different unit cells are constructed to analyze the vibration characteristics of a structure with debonded defect in the high-frequency band. The mode shapes and ODSs are computed numerically to investigate the local defect vibration effects. The results show that there will be obvious local vibration at the damaged location at a certain and appropriate frequency band. A baseline-free damage index calculated from ODSs is originally proposed for damage imaging. For experimental validation, we suggested an intermittent periodic excitation signal for vibration actuating, which may excite multiple ODSs at different frequencies using one measurement that significantly improve the detection efficiency. The experimental results also indicated that the proposed damage identification method is effective to locate the debonding damage in LSSs. The conclusions derived from this study are expected to provide an efficient vibration measurement technique and a practical damage detection method for LSSs, as well as other plate-like structures.","PeriodicalId":54493,"journal":{"name":"Research in Nondestructive Evaluation","volume":"21 1","pages":"147 - 159"},"PeriodicalIF":1.0000,"publicationDate":"2021-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Baseline-Free Damage Identification Method for Lattice Sandwich Structures Based on Operational Deflection Shapes\",\"authors\":\"K. Feng, Qian Zhao, Zheng Li\",\"doi\":\"10.1080/09349847.2021.1946224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT A novel baseline-free damage identification method based on high frequency operational deflection shapes (ODSs) is presented for debonding detection in lattice sandwich structures (LSSs). Two numerical models with different unit cells are constructed to analyze the vibration characteristics of a structure with debonded defect in the high-frequency band. The mode shapes and ODSs are computed numerically to investigate the local defect vibration effects. The results show that there will be obvious local vibration at the damaged location at a certain and appropriate frequency band. A baseline-free damage index calculated from ODSs is originally proposed for damage imaging. For experimental validation, we suggested an intermittent periodic excitation signal for vibration actuating, which may excite multiple ODSs at different frequencies using one measurement that significantly improve the detection efficiency. The experimental results also indicated that the proposed damage identification method is effective to locate the debonding damage in LSSs. The conclusions derived from this study are expected to provide an efficient vibration measurement technique and a practical damage detection method for LSSs, as well as other plate-like structures.\",\"PeriodicalId\":54493,\"journal\":{\"name\":\"Research in Nondestructive Evaluation\",\"volume\":\"21 1\",\"pages\":\"147 - 159\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in Nondestructive Evaluation\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/09349847.2021.1946224\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09349847.2021.1946224","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Baseline-Free Damage Identification Method for Lattice Sandwich Structures Based on Operational Deflection Shapes
ABSTRACT A novel baseline-free damage identification method based on high frequency operational deflection shapes (ODSs) is presented for debonding detection in lattice sandwich structures (LSSs). Two numerical models with different unit cells are constructed to analyze the vibration characteristics of a structure with debonded defect in the high-frequency band. The mode shapes and ODSs are computed numerically to investigate the local defect vibration effects. The results show that there will be obvious local vibration at the damaged location at a certain and appropriate frequency band. A baseline-free damage index calculated from ODSs is originally proposed for damage imaging. For experimental validation, we suggested an intermittent periodic excitation signal for vibration actuating, which may excite multiple ODSs at different frequencies using one measurement that significantly improve the detection efficiency. The experimental results also indicated that the proposed damage identification method is effective to locate the debonding damage in LSSs. The conclusions derived from this study are expected to provide an efficient vibration measurement technique and a practical damage detection method for LSSs, as well as other plate-like structures.
期刊介绍:
Research in Nondestructive Evaluation® is the archival research journal of the American Society for Nondestructive Testing, Inc. RNDE® contains the results of original research in all areas of nondestructive evaluation (NDE). The journal covers experimental and theoretical investigations dealing with the scientific and engineering bases of NDE, its measurement and methodology, and a wide range of applications to materials and structures that relate to the entire life cycle, from manufacture to use and retirement.
Illustrative topics include advances in the underlying science of acoustic, thermal, electrical, magnetic, optical and ionizing radiation techniques and their applications to NDE problems. These problems include the nondestructive characterization of a wide variety of material properties and their degradation in service, nonintrusive sensors for monitoring manufacturing and materials processes, new techniques and combinations of techniques for detecting and characterizing hidden discontinuities and distributed damage in materials, standardization concepts and quantitative approaches for advanced NDE techniques, and long-term continuous monitoring of structures and assemblies. Of particular interest is research which elucidates how to evaluate the effects of imperfect material condition, as quantified by nondestructive measurement, on the functional performance.