{"title":"血管血栓生物力学多尺度建模产生的相场系统:二维局部适定性","authors":"M. Grasselli, A. Poiatti","doi":"10.3934/dcdss.2023105","DOIUrl":null,"url":null,"abstract":"We consider a phase-field model which describes the interactions between the blood flow and the thrombus. The latter is supposed to be a viscoelastic material. The potential describing the cohesive energy of the mixture is assumed to be of Flory-Huggins type (i.e. logarithmic). This ensures the boundedness from below of the dissipation energy. In the two dimensional case, we prove the local (in time) existence and uniqueness of a strong solution, provided that the two viscosities of the pure fluid phases are close enough. We also show that the order parameter remains strictly separated from the pure phases if it is so at the initial time.","PeriodicalId":48838,"journal":{"name":"Discrete and Continuous Dynamical Systems-Series S","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A phase-field system arising from multiscale modeling of thrombus biomechanics in blood vessels: Local well-posedness in dimension two\",\"authors\":\"M. Grasselli, A. Poiatti\",\"doi\":\"10.3934/dcdss.2023105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a phase-field model which describes the interactions between the blood flow and the thrombus. The latter is supposed to be a viscoelastic material. The potential describing the cohesive energy of the mixture is assumed to be of Flory-Huggins type (i.e. logarithmic). This ensures the boundedness from below of the dissipation energy. In the two dimensional case, we prove the local (in time) existence and uniqueness of a strong solution, provided that the two viscosities of the pure fluid phases are close enough. We also show that the order parameter remains strictly separated from the pure phases if it is so at the initial time.\",\"PeriodicalId\":48838,\"journal\":{\"name\":\"Discrete and Continuous Dynamical Systems-Series S\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete and Continuous Dynamical Systems-Series S\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/dcdss.2023105\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete and Continuous Dynamical Systems-Series S","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/dcdss.2023105","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A phase-field system arising from multiscale modeling of thrombus biomechanics in blood vessels: Local well-posedness in dimension two
We consider a phase-field model which describes the interactions between the blood flow and the thrombus. The latter is supposed to be a viscoelastic material. The potential describing the cohesive energy of the mixture is assumed to be of Flory-Huggins type (i.e. logarithmic). This ensures the boundedness from below of the dissipation energy. In the two dimensional case, we prove the local (in time) existence and uniqueness of a strong solution, provided that the two viscosities of the pure fluid phases are close enough. We also show that the order parameter remains strictly separated from the pure phases if it is so at the initial time.
期刊介绍:
Series S of Discrete and Continuous Dynamical Systems only publishes theme issues. Each issue is devoted to a specific area of the mathematical, physical and engineering sciences. This area will define a research frontier that is advancing rapidly, often bridging mathematics and sciences. DCDS-S is essential reading for mathematicians, physicists, engineers and other physical scientists. The journal is published bimonthly.