一种优化s曲线轨迹的节能方法

Fadi Assad, E. Rushforth, Mus'ab H. Ahmad, B. Ahmad, R. Harrison
{"title":"一种优化s曲线轨迹的节能方法","authors":"Fadi Assad, E. Rushforth, Mus'ab H. Ahmad, B. Ahmad, R. Harrison","doi":"10.1109/COASE.2018.8560587","DOIUrl":null,"url":null,"abstract":"In today's manufacturing industry, higher productivity and sustainability should go hand-in-hand. This practice is motivated by governmental regulations as well as customers' awareness. For the current time, one of the inexpensive solutions is motion planning for an improved energy consumption. This paper introduces a general approach that is valid for testing and optimising energy consumption of the input motion profile. The Particle Swarm Optimisation method (PSO) is used because of its mathematical simplicity and quick convergence. Being commonly used, s-curve motion profile is reconstructed and optimised for a better energy consumption. The results show potential energy reduction and better positioning for the system configured according to the optimised s-curve.","PeriodicalId":6518,"journal":{"name":"2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)","volume":"33 1","pages":"98-103"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An Approach of Optimising S-curve Trajectory for a Better Energy Consumption\",\"authors\":\"Fadi Assad, E. Rushforth, Mus'ab H. Ahmad, B. Ahmad, R. Harrison\",\"doi\":\"10.1109/COASE.2018.8560587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In today's manufacturing industry, higher productivity and sustainability should go hand-in-hand. This practice is motivated by governmental regulations as well as customers' awareness. For the current time, one of the inexpensive solutions is motion planning for an improved energy consumption. This paper introduces a general approach that is valid for testing and optimising energy consumption of the input motion profile. The Particle Swarm Optimisation method (PSO) is used because of its mathematical simplicity and quick convergence. Being commonly used, s-curve motion profile is reconstructed and optimised for a better energy consumption. The results show potential energy reduction and better positioning for the system configured according to the optimised s-curve.\",\"PeriodicalId\":6518,\"journal\":{\"name\":\"2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)\",\"volume\":\"33 1\",\"pages\":\"98-103\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COASE.2018.8560587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2018.8560587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在今天的制造业中,更高的生产率和可持续性应该齐头并进。这种做法的动机是政府的规定和客户的意识。目前,一个廉价的解决方案是运动规划,以改善能源消耗。本文介绍了一种测试和优化输入运动轮廓能耗的通用方法。粒子群算法具有数学简单、收敛速度快等优点。s曲线运动轮廓是一种常用的运动轮廓重构和优化方法,以获得更好的能耗。结果表明,根据优化后的s曲线配置的系统能降低势能,定位效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Approach of Optimising S-curve Trajectory for a Better Energy Consumption
In today's manufacturing industry, higher productivity and sustainability should go hand-in-hand. This practice is motivated by governmental regulations as well as customers' awareness. For the current time, one of the inexpensive solutions is motion planning for an improved energy consumption. This paper introduces a general approach that is valid for testing and optimising energy consumption of the input motion profile. The Particle Swarm Optimisation method (PSO) is used because of its mathematical simplicity and quick convergence. Being commonly used, s-curve motion profile is reconstructed and optimised for a better energy consumption. The results show potential energy reduction and better positioning for the system configured according to the optimised s-curve.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automated Electric-Field-Based Nanowire Characterization, Manipulation, and Assembly Dynamic Sampling for Feasibility Determination Gripping Positions Selection for Unfolding a Rectangular Cloth Product Multi-Robot Routing Algorithms for Robots Operating in Vineyards Enhancing Data-Driven Models with Knowledge from Engineering Models in Manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1