R. Farivar, S. Clavagnier, Bruce C. Hansen, Ben Thompson, R. Hess
{"title":"人类视觉皮层空间频率图中的非均匀相位灵敏度","authors":"R. Farivar, S. Clavagnier, Bruce C. Hansen, Ben Thompson, R. Hess","doi":"10.1113/JP273206","DOIUrl":null,"url":null,"abstract":"Just as a portrait painting can come from a collection of coarse and fine details, natural vision can be decomposed into coarse and fine components. Previous studies have shown that the early visual areas in the brain represent these components in a map‐like fashion. Other studies have shown that these same visual areas can be sensitive to how coarse and fine features line up in space. We found that the brain actually jointly represents both the scale of the feature (fine, medium, or coarse) and the alignment of these features in space. The results suggest that the visual cortex has an optimized representation particularly for the alignment of fine details, which are crucial in understanding the visual scene.","PeriodicalId":22512,"journal":{"name":"The Japanese journal of physiology","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Non‐uniform phase sensitivity in spatial frequency maps of the human visual cortex\",\"authors\":\"R. Farivar, S. Clavagnier, Bruce C. Hansen, Ben Thompson, R. Hess\",\"doi\":\"10.1113/JP273206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Just as a portrait painting can come from a collection of coarse and fine details, natural vision can be decomposed into coarse and fine components. Previous studies have shown that the early visual areas in the brain represent these components in a map‐like fashion. Other studies have shown that these same visual areas can be sensitive to how coarse and fine features line up in space. We found that the brain actually jointly represents both the scale of the feature (fine, medium, or coarse) and the alignment of these features in space. The results suggest that the visual cortex has an optimized representation particularly for the alignment of fine details, which are crucial in understanding the visual scene.\",\"PeriodicalId\":22512,\"journal\":{\"name\":\"The Japanese journal of physiology\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Japanese journal of physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1113/JP273206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Japanese journal of physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1113/JP273206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Non‐uniform phase sensitivity in spatial frequency maps of the human visual cortex
Just as a portrait painting can come from a collection of coarse and fine details, natural vision can be decomposed into coarse and fine components. Previous studies have shown that the early visual areas in the brain represent these components in a map‐like fashion. Other studies have shown that these same visual areas can be sensitive to how coarse and fine features line up in space. We found that the brain actually jointly represents both the scale of the feature (fine, medium, or coarse) and the alignment of these features in space. The results suggest that the visual cortex has an optimized representation particularly for the alignment of fine details, which are crucial in understanding the visual scene.