{"title":"Navier-Stokes方程的非重叠区域分解与紧致局部积分RBF并行计算","authors":"N. Pham-Sy, C. Tran","doi":"10.1080/10618562.2023.2229250","DOIUrl":null,"url":null,"abstract":"A non-overlapping domain decomposition-based parallel algorithm coupled with a compact local integrated radial basis function (CLIRBF) method is developed for solving Navier-Stokes equations. For this approach, a problem is divided into subdomains. In each sub-domain, a CLIRBF scheme is applied to solve the Navier-Stokes equations of flows. A relaxation factor is used at the interface between sub-domains to ensure the quick convergence of the present method. The Bitmap termination detection technique is introduced to complete the global termination. The present approach is verified using two fluid flow problems: the lid-driven cavity and the natural convection in concentric annuli flow. The numerical results have demonstrated the efficiency of the present parallel method compared with the corresponding sequential one and other published methods. Especially, super-linear speed-up was achieved for several CPUs. In terms of accuracy, the obtained results are in very good agreement with benchmark results.","PeriodicalId":56288,"journal":{"name":"International Journal of Computational Fluid Dynamics","volume":"20 1","pages":"835 - 856"},"PeriodicalIF":1.1000,"publicationDate":"2022-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parallel Computation Using Non-Overlapping Domain Decomposition Coupled with Compact Local Integrated RBF for Navier–Stokes Equations\",\"authors\":\"N. Pham-Sy, C. Tran\",\"doi\":\"10.1080/10618562.2023.2229250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A non-overlapping domain decomposition-based parallel algorithm coupled with a compact local integrated radial basis function (CLIRBF) method is developed for solving Navier-Stokes equations. For this approach, a problem is divided into subdomains. In each sub-domain, a CLIRBF scheme is applied to solve the Navier-Stokes equations of flows. A relaxation factor is used at the interface between sub-domains to ensure the quick convergence of the present method. The Bitmap termination detection technique is introduced to complete the global termination. The present approach is verified using two fluid flow problems: the lid-driven cavity and the natural convection in concentric annuli flow. The numerical results have demonstrated the efficiency of the present parallel method compared with the corresponding sequential one and other published methods. Especially, super-linear speed-up was achieved for several CPUs. In terms of accuracy, the obtained results are in very good agreement with benchmark results.\",\"PeriodicalId\":56288,\"journal\":{\"name\":\"International Journal of Computational Fluid Dynamics\",\"volume\":\"20 1\",\"pages\":\"835 - 856\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Fluid Dynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10618562.2023.2229250\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Fluid Dynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10618562.2023.2229250","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Parallel Computation Using Non-Overlapping Domain Decomposition Coupled with Compact Local Integrated RBF for Navier–Stokes Equations
A non-overlapping domain decomposition-based parallel algorithm coupled with a compact local integrated radial basis function (CLIRBF) method is developed for solving Navier-Stokes equations. For this approach, a problem is divided into subdomains. In each sub-domain, a CLIRBF scheme is applied to solve the Navier-Stokes equations of flows. A relaxation factor is used at the interface between sub-domains to ensure the quick convergence of the present method. The Bitmap termination detection technique is introduced to complete the global termination. The present approach is verified using two fluid flow problems: the lid-driven cavity and the natural convection in concentric annuli flow. The numerical results have demonstrated the efficiency of the present parallel method compared with the corresponding sequential one and other published methods. Especially, super-linear speed-up was achieved for several CPUs. In terms of accuracy, the obtained results are in very good agreement with benchmark results.
期刊介绍:
The International Journal of Computational Fluid Dynamics publishes innovative CFD research, both fundamental and applied, with applications in a wide variety of fields.
The Journal emphasizes accurate predictive tools for 3D flow analysis and design, and those promoting a deeper understanding of the physics of 3D fluid motion. Relevant and innovative practical and industrial 3D applications, as well as those of an interdisciplinary nature, are encouraged.