不确定多项目订单下的分布式鲁棒前端配送中心库存优化

Yu-Lin Zhang, Lin Han, Xiaotian Zhuang
{"title":"不确定多项目订单下的分布式鲁棒前端配送中心库存优化","authors":"Yu-Lin Zhang, Lin Han, Xiaotian Zhuang","doi":"10.3934/dcdss.2022006","DOIUrl":null,"url":null,"abstract":"As a new retail model, the front distribution center (FDC) has been recognized as an effective instrument for timely order delivery. However, the high customer demand uncertainty, multi-item order pattern, and limited inventory capacity pose a challenging task for FDC managers to determine the optimal inventory level. To this end, this paper proposes a two-stage distributionally robust (DR) FDC inventory model and an efficient row-and-column generation (RCG) algorithm. The proposed DR model uses a Wasserstein distance-based distributional set to describe the uncertain demand and utilizes a robust conditional value at risk decision criterion to mitigate the risk of distribution ambiguity. The proposed RCG is able to solve the complex max-min-max DR model exactly by repeatedly solving relaxed master problems and feasibility subproblems. We show that the optimal solution of the non-convex feasibility subproblem can be obtained by solving two linear programming problems. Numerical experiments based on real-world data highlight the superior out-of-sample performance of the proposed DR model in comparison with an existing benchmark approach and validate the computational efficiency of the proposed algorithm.","PeriodicalId":11254,"journal":{"name":"Discrete & Continuous Dynamical Systems - S","volume":"40 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Distributionally robust front distribution center inventory optimization with uncertain multi-item orders\",\"authors\":\"Yu-Lin Zhang, Lin Han, Xiaotian Zhuang\",\"doi\":\"10.3934/dcdss.2022006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As a new retail model, the front distribution center (FDC) has been recognized as an effective instrument for timely order delivery. However, the high customer demand uncertainty, multi-item order pattern, and limited inventory capacity pose a challenging task for FDC managers to determine the optimal inventory level. To this end, this paper proposes a two-stage distributionally robust (DR) FDC inventory model and an efficient row-and-column generation (RCG) algorithm. The proposed DR model uses a Wasserstein distance-based distributional set to describe the uncertain demand and utilizes a robust conditional value at risk decision criterion to mitigate the risk of distribution ambiguity. The proposed RCG is able to solve the complex max-min-max DR model exactly by repeatedly solving relaxed master problems and feasibility subproblems. We show that the optimal solution of the non-convex feasibility subproblem can be obtained by solving two linear programming problems. Numerical experiments based on real-world data highlight the superior out-of-sample performance of the proposed DR model in comparison with an existing benchmark approach and validate the computational efficiency of the proposed algorithm.\",\"PeriodicalId\":11254,\"journal\":{\"name\":\"Discrete & Continuous Dynamical Systems - S\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Continuous Dynamical Systems - S\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/dcdss.2022006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Continuous Dynamical Systems - S","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcdss.2022006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

作为一种新的零售模式,前端配送中心(FDC)已被公认为是实现订单及时配送的有效工具。然而,客户需求的高不确定性、多项目订单模式和有限的库存能力给物流配送中心管理者确定最优库存水平带来了挑战。为此,本文提出了一种两阶段分布鲁棒(DR) FDC库存模型和一种高效的行列生成(RCG)算法。该模型采用基于Wasserstein距离的分布集来描述不确定需求,并采用鲁棒的条件风险值决策准则来降低分布模糊的风险。该算法通过反复求解松弛主问题和可行性子问题,能够精确求解复杂的max-min-max DR模型。通过求解两个线性规划问题,得到了非凸可行性子问题的最优解。基于实际数据的数值实验表明,与现有的基准方法相比,所提出的DR模型具有更好的样本外性能,并验证了所提出算法的计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Distributionally robust front distribution center inventory optimization with uncertain multi-item orders
As a new retail model, the front distribution center (FDC) has been recognized as an effective instrument for timely order delivery. However, the high customer demand uncertainty, multi-item order pattern, and limited inventory capacity pose a challenging task for FDC managers to determine the optimal inventory level. To this end, this paper proposes a two-stage distributionally robust (DR) FDC inventory model and an efficient row-and-column generation (RCG) algorithm. The proposed DR model uses a Wasserstein distance-based distributional set to describe the uncertain demand and utilizes a robust conditional value at risk decision criterion to mitigate the risk of distribution ambiguity. The proposed RCG is able to solve the complex max-min-max DR model exactly by repeatedly solving relaxed master problems and feasibility subproblems. We show that the optimal solution of the non-convex feasibility subproblem can be obtained by solving two linear programming problems. Numerical experiments based on real-world data highlight the superior out-of-sample performance of the proposed DR model in comparison with an existing benchmark approach and validate the computational efficiency of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On some model problem for the propagation of interacting species in a special environment On the Cahn-Hilliard-Darcy system with mass source and strongly separating potential Stochastic local volatility models and the Wei-Norman factorization method Robust $ H_\infty $ resilient event-triggered control design for T-S fuzzy systems Robust adaptive sliding mode tracking control for a rigid body based on Lie subgroups of SO(3)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1