纠正性执行:由监视器执行安全策略的新范例

R. Khoury, N. Tawbi
{"title":"纠正性执行:由监视器执行安全策略的新范例","authors":"R. Khoury, N. Tawbi","doi":"10.1145/2240276.2240281","DOIUrl":null,"url":null,"abstract":"Runtime monitoring is an increasingly popular method to ensure the safe execution of untrusted codes. Monitors observe and transform the execution of these codes, responding when needed to correct or prevent a violation of a user-defined security policy. Prior research has shown that the set of properties monitors can enforce correlates with the latitude they are given to transform and alter the target execution. But for enforcement to be meaningful this capacity must be constrained, otherwise the monitor can enforce any property, but not necessarily in a manner that is useful or desirable. However, such constraints have not been significantly addressed in prior work. In this article, we develop a new paradigm of security policy enforcement in which the behavior of the enforcement mechanism is restricted to ensure that valid aspects present in the execution are preserved notwithstanding any transformation it may perform. These restrictions capture the desired behavior of valid executions of the program, and are stated by way of a preorder over sequences. The resulting model is closer than previous ones to what would be expected of a real-life monitor, from which we demand a minimal footprint on both valid and invalid executions. We illustrate this framework with examples of real-life security properties. Since several different enforcement alternatives of the same property are made possible by the flexibility of this type of enforcement, our study also provides metrics that allow the user to compare monitors objectively and choose the best enforcement paradigm for a given situation.","PeriodicalId":50912,"journal":{"name":"ACM Transactions on Information and System Security","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Corrective Enforcement: A New Paradigm of Security Policy Enforcement by Monitors\",\"authors\":\"R. Khoury, N. Tawbi\",\"doi\":\"10.1145/2240276.2240281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Runtime monitoring is an increasingly popular method to ensure the safe execution of untrusted codes. Monitors observe and transform the execution of these codes, responding when needed to correct or prevent a violation of a user-defined security policy. Prior research has shown that the set of properties monitors can enforce correlates with the latitude they are given to transform and alter the target execution. But for enforcement to be meaningful this capacity must be constrained, otherwise the monitor can enforce any property, but not necessarily in a manner that is useful or desirable. However, such constraints have not been significantly addressed in prior work. In this article, we develop a new paradigm of security policy enforcement in which the behavior of the enforcement mechanism is restricted to ensure that valid aspects present in the execution are preserved notwithstanding any transformation it may perform. These restrictions capture the desired behavior of valid executions of the program, and are stated by way of a preorder over sequences. The resulting model is closer than previous ones to what would be expected of a real-life monitor, from which we demand a minimal footprint on both valid and invalid executions. We illustrate this framework with examples of real-life security properties. Since several different enforcement alternatives of the same property are made possible by the flexibility of this type of enforcement, our study also provides metrics that allow the user to compare monitors objectively and choose the best enforcement paradigm for a given situation.\",\"PeriodicalId\":50912,\"journal\":{\"name\":\"ACM Transactions on Information and System Security\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Information and System Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2240276.2240281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Information and System Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2240276.2240281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 22

摘要

运行时监视是一种日益流行的确保不可信代码安全执行的方法。监视器观察并转换这些代码的执行,在需要纠正或防止违反用户定义的安全策略时做出响应。先前的研究表明,属性监视器集可以根据给定的转换和更改目标执行的自由度来强制执行关联。但是,要使强制执行有意义,这种能力必须受到限制,否则监视器可以强制执行任何财产,但不一定是以有用或可取的方式。然而,这些限制在以前的工作中并没有得到显著的解决。在本文中,我们开发了一种安全策略实施的新范例,在这种范例中,实施机制的行为受到限制,以确保执行中存在的有效方面得到保留,而不管它可能执行任何转换。这些限制捕获了程序有效执行所需的行为,并通过序列的预先顺序来声明。得到的模型比以前的模型更接近实际的监视器,我们要求有效和无效执行的占用空间最小。我们用实际安全属性的例子来说明这个框架。由于这种类型执行的灵活性使同一属性的几种不同执行方案成为可能,因此我们的研究还提供了允许用户客观地比较监视器并为给定情况选择最佳执行范例的指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Corrective Enforcement: A New Paradigm of Security Policy Enforcement by Monitors
Runtime monitoring is an increasingly popular method to ensure the safe execution of untrusted codes. Monitors observe and transform the execution of these codes, responding when needed to correct or prevent a violation of a user-defined security policy. Prior research has shown that the set of properties monitors can enforce correlates with the latitude they are given to transform and alter the target execution. But for enforcement to be meaningful this capacity must be constrained, otherwise the monitor can enforce any property, but not necessarily in a manner that is useful or desirable. However, such constraints have not been significantly addressed in prior work. In this article, we develop a new paradigm of security policy enforcement in which the behavior of the enforcement mechanism is restricted to ensure that valid aspects present in the execution are preserved notwithstanding any transformation it may perform. These restrictions capture the desired behavior of valid executions of the program, and are stated by way of a preorder over sequences. The resulting model is closer than previous ones to what would be expected of a real-life monitor, from which we demand a minimal footprint on both valid and invalid executions. We illustrate this framework with examples of real-life security properties. Since several different enforcement alternatives of the same property are made possible by the flexibility of this type of enforcement, our study also provides metrics that allow the user to compare monitors objectively and choose the best enforcement paradigm for a given situation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Information and System Security
ACM Transactions on Information and System Security 工程技术-计算机:信息系统
CiteScore
4.50
自引率
0.00%
发文量
0
审稿时长
3.3 months
期刊介绍: ISSEC is a scholarly, scientific journal that publishes original research papers in all areas of information and system security, including technologies, systems, applications, and policies.
期刊最新文献
An Efficient User Verification System Using Angle-Based Mouse Movement Biometrics A New Framework for Privacy-Preserving Aggregation of Time-Series Data Behavioral Study of Users When Interacting with Active Honeytokens Model Checking Distributed Mandatory Access Control Policies Randomization-Based Intrusion Detection System for Advanced Metering Infrastructure*
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1