G. Modica, R. Zhu, R. Horváth, G. Beaudoin, I. Sagnes, R. Braive
{"title":"绝缘体上悬浮式砷化镓声子波导中2ghz声波的慢传播","authors":"G. Modica, R. Zhu, R. Horváth, G. Beaudoin, I. Sagnes, R. Braive","doi":"10.1063/5.0019949","DOIUrl":null,"url":null,"abstract":"Optoelectronic oscillators have dominated the scene of microwave oscillators in the last few years thanks to their great performances regarding frequency stability and phase noise. However, miniaturization of such a device is an up to date challenge. Recently, devices based on phonon-photon interaction gather a lot of interest thanks to their extreme compactness and working frequency directly in the GHz. In this frame, a still missing element to obtain long-term frequency stability performances is an on-chip delay within the feedback loop. Here, we experimentally show filtering and slow propagation of 2 GHz acoustic waves on a Gallium Arsenide membrane heterogeneously integrated on silicon wafer. By engineering the dispersion of an acoustical waveguide, we evidence a group velocity below 1000 m/s for the mode able to propagate. Thus, an integrated delay implementation is at reach for potential improvement of opto-acoustic devices such as optomechanical oscillators or wireless applications.","PeriodicalId":8423,"journal":{"name":"arXiv: Applied Physics","volume":"57 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Slow propagation of 2 GHz acoustical waves in a suspended GaAs phononic waveguide on insulator\",\"authors\":\"G. Modica, R. Zhu, R. Horváth, G. Beaudoin, I. Sagnes, R. Braive\",\"doi\":\"10.1063/5.0019949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optoelectronic oscillators have dominated the scene of microwave oscillators in the last few years thanks to their great performances regarding frequency stability and phase noise. However, miniaturization of such a device is an up to date challenge. Recently, devices based on phonon-photon interaction gather a lot of interest thanks to their extreme compactness and working frequency directly in the GHz. In this frame, a still missing element to obtain long-term frequency stability performances is an on-chip delay within the feedback loop. Here, we experimentally show filtering and slow propagation of 2 GHz acoustic waves on a Gallium Arsenide membrane heterogeneously integrated on silicon wafer. By engineering the dispersion of an acoustical waveguide, we evidence a group velocity below 1000 m/s for the mode able to propagate. Thus, an integrated delay implementation is at reach for potential improvement of opto-acoustic devices such as optomechanical oscillators or wireless applications.\",\"PeriodicalId\":8423,\"journal\":{\"name\":\"arXiv: Applied Physics\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Applied Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0019949\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Applied Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0019949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Slow propagation of 2 GHz acoustical waves in a suspended GaAs phononic waveguide on insulator
Optoelectronic oscillators have dominated the scene of microwave oscillators in the last few years thanks to their great performances regarding frequency stability and phase noise. However, miniaturization of such a device is an up to date challenge. Recently, devices based on phonon-photon interaction gather a lot of interest thanks to their extreme compactness and working frequency directly in the GHz. In this frame, a still missing element to obtain long-term frequency stability performances is an on-chip delay within the feedback loop. Here, we experimentally show filtering and slow propagation of 2 GHz acoustic waves on a Gallium Arsenide membrane heterogeneously integrated on silicon wafer. By engineering the dispersion of an acoustical waveguide, we evidence a group velocity below 1000 m/s for the mode able to propagate. Thus, an integrated delay implementation is at reach for potential improvement of opto-acoustic devices such as optomechanical oscillators or wireless applications.