PrintCast A356/316L复合材料的超高速冲击

L. Poole, M. Gonzales, M. R. French, W. Yarberry, Abdel R. Moustafa, Z. Cordero
{"title":"PrintCast A356/316L复合材料的超高速冲击","authors":"L. Poole, M. Gonzales, M. R. French, W. Yarberry, Abdel R. Moustafa, Z. Cordero","doi":"10.1115/hvis2019-118","DOIUrl":null,"url":null,"abstract":"\n Shielding elements used to protect against micrometeoroids and orbital debris (MMOD) (e.g., Whipple shields, multi-shock shields, stuffed Whipple shields) typically incorporate thin bumper sheets that intercept and vaporize incident MMOD traveling at speeds in excess of several km/s. In some applications, however, space limitations prevent the use of large stand-offs, and components must instead be protected by a single monolithic shielding element. Electronics, for example, are often only protected by their housing. With such applications in mind, we describe a class of spatially efficient composite shielding elements fabricated using a hybrid additive manufacturing approach termed PrintCasting. The PrintCast process consists of two steps: First selective laser melting is used to fabricate a lattice preform in the shape of the final component. Next this preform is infiltrated with a liquid metal that has a melting point lower than that of the lattice. The resulting solidified part is a periodic interpenetrating composite in which each constituent forms a continuous network. Using a combination of hypervelocity impact experiments and shock transmission calculations, we demonstrate that these interpenetrating composite shielding elements mitigate spallation and other failure modes through multiple internal shock reflections at the buried heterophase interfaces.","PeriodicalId":6596,"journal":{"name":"2019 15th Hypervelocity Impact Symposium","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hypervelocity impact of PrintCast A356/316L composites\",\"authors\":\"L. Poole, M. Gonzales, M. R. French, W. Yarberry, Abdel R. Moustafa, Z. Cordero\",\"doi\":\"10.1115/hvis2019-118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Shielding elements used to protect against micrometeoroids and orbital debris (MMOD) (e.g., Whipple shields, multi-shock shields, stuffed Whipple shields) typically incorporate thin bumper sheets that intercept and vaporize incident MMOD traveling at speeds in excess of several km/s. In some applications, however, space limitations prevent the use of large stand-offs, and components must instead be protected by a single monolithic shielding element. Electronics, for example, are often only protected by their housing. With such applications in mind, we describe a class of spatially efficient composite shielding elements fabricated using a hybrid additive manufacturing approach termed PrintCasting. The PrintCast process consists of two steps: First selective laser melting is used to fabricate a lattice preform in the shape of the final component. Next this preform is infiltrated with a liquid metal that has a melting point lower than that of the lattice. The resulting solidified part is a periodic interpenetrating composite in which each constituent forms a continuous network. Using a combination of hypervelocity impact experiments and shock transmission calculations, we demonstrate that these interpenetrating composite shielding elements mitigate spallation and other failure modes through multiple internal shock reflections at the buried heterophase interfaces.\",\"PeriodicalId\":6596,\"journal\":{\"name\":\"2019 15th Hypervelocity Impact Symposium\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 15th Hypervelocity Impact Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/hvis2019-118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 15th Hypervelocity Impact Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/hvis2019-118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

用于防止微流星体和轨道碎片(MMOD)的屏蔽元件(例如,惠普尔护盾、多重冲击护盾、填充惠普尔护盾)通常包含薄的缓冲器片,用于拦截和汽化以超过几公里/秒的速度行进的入射MMOD。然而,在某些应用中,由于空间限制,无法使用大型隔离装置,因此元件必须由单个单片屏蔽元件保护。例如,电子产品通常只受到外壳的保护。考虑到这些应用,我们描述了一类使用称为PrintCasting的混合增材制造方法制造的空间高效复合屏蔽元件。PrintCast过程包括两个步骤:首先,使用选择性激光熔化来制造最终组件形状的晶格预制体。接下来,用熔点低于晶格的液态金属浸润该预坯。所得到的固化部分是周期性互穿复合材料,其中每个组分形成连续的网络。结合超高速冲击实验和冲击传递计算,我们证明了这些互穿复合屏蔽元件通过埋藏异相界面的多次内部冲击反射来减轻裂裂和其他破坏模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hypervelocity impact of PrintCast A356/316L composites
Shielding elements used to protect against micrometeoroids and orbital debris (MMOD) (e.g., Whipple shields, multi-shock shields, stuffed Whipple shields) typically incorporate thin bumper sheets that intercept and vaporize incident MMOD traveling at speeds in excess of several km/s. In some applications, however, space limitations prevent the use of large stand-offs, and components must instead be protected by a single monolithic shielding element. Electronics, for example, are often only protected by their housing. With such applications in mind, we describe a class of spatially efficient composite shielding elements fabricated using a hybrid additive manufacturing approach termed PrintCasting. The PrintCast process consists of two steps: First selective laser melting is used to fabricate a lattice preform in the shape of the final component. Next this preform is infiltrated with a liquid metal that has a melting point lower than that of the lattice. The resulting solidified part is a periodic interpenetrating composite in which each constituent forms a continuous network. Using a combination of hypervelocity impact experiments and shock transmission calculations, we demonstrate that these interpenetrating composite shielding elements mitigate spallation and other failure modes through multiple internal shock reflections at the buried heterophase interfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact Modeling for the Double Asteroid Redirection Test Mission Bulking as a Mechanism in the Failure of Advanced Ceramics Effects of Additional Body on Jet Velocity of Hyper-cumulation Assessment and Validation of Collision “Consequence” Method of Assessing Orbital Regime Risk Posed by Potential Satellite Conjunctions Dynamic response of graphene and yttria-stabilized zirconia (YSZ) composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1