H. B. Nayaka, R. Londonkar, M. K. Umesh, Asha Tukappa
{"title":"马齿苋中芹菜素的抗菌特性研究。","authors":"H. B. Nayaka, R. Londonkar, M. K. Umesh, Asha Tukappa","doi":"10.1155/2014/175851","DOIUrl":null,"url":null,"abstract":"The flavonoid apigenin was isolated from aerial part of P. oleracea L. The dried sample of plant was powdered and subjected to soxhlet extractor by adding 80 mL of ethanol : water (70 : 30). The extract was centrifuged at 11000 rpm for 30 min; supernatant was taken for further use. The fraction was concentrated and subjected to PTLC. The R f value of isolated apigenin was calculated (0.82). Purified material was also subjected to its IR spectra, LC-MS, NMR, and HPLC for structural elucidation. The apigenin so-obtained was subjected to antibacterial activity on five pathogenic bacterial strains like Pseudomonas aeruginosa, Salmonella typhimurium, Proteus mirabilis, Klebsiella pneumoniae and Enterobacter aerogenes; among all the bacterial strains, Salmonella typhimurium (17.36 ± 0.18) and Proteus mirabilis (19.12 ± 0.01) have shown maximum diameter of inhibition zone for flavonoid and remaining bacterial strains have shown moderate diameter of inhibition zone when compared with control values 14.56 ± 0.21 and 11.68 ± 0.13, respectively. The minimum inhibitory concentration (MIC) of the flavonoid isolated from P. oleracea L. was tested at the concentration ranging from undiluted sample to 10 mg per mL of concentration. The minimum inhibition concentration (MIC) for the flavonoid for all tested bacterial strains was found to be >4 mg per mL. Hence, the apigenin has antibacterial property and can be used to develop antibacterial drugs.","PeriodicalId":13886,"journal":{"name":"International Journal of Bacteriology","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"90","resultStr":"{\"title\":\"Antibacterial Attributes of Apigenin, Isolated from Portulaca oleracea L.\",\"authors\":\"H. B. Nayaka, R. Londonkar, M. K. Umesh, Asha Tukappa\",\"doi\":\"10.1155/2014/175851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The flavonoid apigenin was isolated from aerial part of P. oleracea L. The dried sample of plant was powdered and subjected to soxhlet extractor by adding 80 mL of ethanol : water (70 : 30). The extract was centrifuged at 11000 rpm for 30 min; supernatant was taken for further use. The fraction was concentrated and subjected to PTLC. The R f value of isolated apigenin was calculated (0.82). Purified material was also subjected to its IR spectra, LC-MS, NMR, and HPLC for structural elucidation. The apigenin so-obtained was subjected to antibacterial activity on five pathogenic bacterial strains like Pseudomonas aeruginosa, Salmonella typhimurium, Proteus mirabilis, Klebsiella pneumoniae and Enterobacter aerogenes; among all the bacterial strains, Salmonella typhimurium (17.36 ± 0.18) and Proteus mirabilis (19.12 ± 0.01) have shown maximum diameter of inhibition zone for flavonoid and remaining bacterial strains have shown moderate diameter of inhibition zone when compared with control values 14.56 ± 0.21 and 11.68 ± 0.13, respectively. The minimum inhibitory concentration (MIC) of the flavonoid isolated from P. oleracea L. was tested at the concentration ranging from undiluted sample to 10 mg per mL of concentration. The minimum inhibition concentration (MIC) for the flavonoid for all tested bacterial strains was found to be >4 mg per mL. Hence, the apigenin has antibacterial property and can be used to develop antibacterial drugs.\",\"PeriodicalId\":13886,\"journal\":{\"name\":\"International Journal of Bacteriology\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"90\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Bacteriology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2014/175851\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bacteriology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2014/175851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Antibacterial Attributes of Apigenin, Isolated from Portulaca oleracea L.
The flavonoid apigenin was isolated from aerial part of P. oleracea L. The dried sample of plant was powdered and subjected to soxhlet extractor by adding 80 mL of ethanol : water (70 : 30). The extract was centrifuged at 11000 rpm for 30 min; supernatant was taken for further use. The fraction was concentrated and subjected to PTLC. The R f value of isolated apigenin was calculated (0.82). Purified material was also subjected to its IR spectra, LC-MS, NMR, and HPLC for structural elucidation. The apigenin so-obtained was subjected to antibacterial activity on five pathogenic bacterial strains like Pseudomonas aeruginosa, Salmonella typhimurium, Proteus mirabilis, Klebsiella pneumoniae and Enterobacter aerogenes; among all the bacterial strains, Salmonella typhimurium (17.36 ± 0.18) and Proteus mirabilis (19.12 ± 0.01) have shown maximum diameter of inhibition zone for flavonoid and remaining bacterial strains have shown moderate diameter of inhibition zone when compared with control values 14.56 ± 0.21 and 11.68 ± 0.13, respectively. The minimum inhibitory concentration (MIC) of the flavonoid isolated from P. oleracea L. was tested at the concentration ranging from undiluted sample to 10 mg per mL of concentration. The minimum inhibition concentration (MIC) for the flavonoid for all tested bacterial strains was found to be >4 mg per mL. Hence, the apigenin has antibacterial property and can be used to develop antibacterial drugs.