使用机器学习方法确定情感分类的印度尼西亚文本数据集

Pub Date : 2020-01-20 DOI:10.31289/jite.v3i2.3153
I. Syahputra, Tulus Tulus, S. Efendi
{"title":"使用机器学习方法确定情感分类的印度尼西亚文本数据集","authors":"I. Syahputra, Tulus Tulus, S. Efendi","doi":"10.31289/jite.v3i2.3153","DOIUrl":null,"url":null,"abstract":"Advances in information technology encourage the emergence of unlimited textual information with the use of online media developing so rapidly that the emergence of the need for information presentation without reducing the value of the information presented. Basicaly the concept of the dataset is a general form of almost every discipline, where the dataset provides empirical basic information for research activities. Sentiment analysis is done to see opinions or feelings about a problem or identify and classify information trends from the problem. The dataset analysis in determining sentiment classification is a model of sentiment classification that has relevance to the dataset with the use of machine learning techniques with supervision that learns from experience to predict output from labeled input data and output from machine learning. The results of experiments and tests that have been carried out on machine learning techniques with supervision can classify sentiments in the tweet text properly and the level of accuracy can still be improved to a better direction with data namely baseline 100 (days) and 83 (weeks), naivebayes 100 (days) and 82 (weeks), maxent 100 (days) and 83 (weeks), and SVM 100 (days) and 83 (weeks).","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Indonesian Text Dataset for Determining Sentiment Classification Using Mechine Learning Approach\",\"authors\":\"I. Syahputra, Tulus Tulus, S. Efendi\",\"doi\":\"10.31289/jite.v3i2.3153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advances in information technology encourage the emergence of unlimited textual information with the use of online media developing so rapidly that the emergence of the need for information presentation without reducing the value of the information presented. Basicaly the concept of the dataset is a general form of almost every discipline, where the dataset provides empirical basic information for research activities. Sentiment analysis is done to see opinions or feelings about a problem or identify and classify information trends from the problem. The dataset analysis in determining sentiment classification is a model of sentiment classification that has relevance to the dataset with the use of machine learning techniques with supervision that learns from experience to predict output from labeled input data and output from machine learning. The results of experiments and tests that have been carried out on machine learning techniques with supervision can classify sentiments in the tweet text properly and the level of accuracy can still be improved to a better direction with data namely baseline 100 (days) and 83 (weeks), naivebayes 100 (days) and 82 (weeks), maxent 100 (days) and 83 (weeks), and SVM 100 (days) and 83 (weeks).\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31289/jite.v3i2.3153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31289/jite.v3i2.3153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

信息技术的进步鼓励了无限文本信息的出现,网络媒体的使用发展如此迅速,以至于需要在不降低信息呈现价值的情况下呈现信息。基本上,数据集的概念是几乎所有学科的一般形式,其中数据集为研究活动提供了经验基础信息。情感分析的目的是查看对某个问题的看法或感受,或者从该问题中识别和分类信息趋势。确定情绪分类的数据集分析是一种与数据集相关的情绪分类模型,该模型使用具有监督的机器学习技术,从经验中学习以预测标记输入数据的输出和机器学习的输出。在有监督的机器学习技术上进行的实验和测试的结果可以正确地对tweet文本中的情绪进行分类,并且精度水平仍然可以提高到更好的方向,数据为基线100(天)和83(周),naivebayes 100(天)和82(周),maxent 100(天)和83(周),SVM 100(天)和83(周)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Indonesian Text Dataset for Determining Sentiment Classification Using Mechine Learning Approach
Advances in information technology encourage the emergence of unlimited textual information with the use of online media developing so rapidly that the emergence of the need for information presentation without reducing the value of the information presented. Basicaly the concept of the dataset is a general form of almost every discipline, where the dataset provides empirical basic information for research activities. Sentiment analysis is done to see opinions or feelings about a problem or identify and classify information trends from the problem. The dataset analysis in determining sentiment classification is a model of sentiment classification that has relevance to the dataset with the use of machine learning techniques with supervision that learns from experience to predict output from labeled input data and output from machine learning. The results of experiments and tests that have been carried out on machine learning techniques with supervision can classify sentiments in the tweet text properly and the level of accuracy can still be improved to a better direction with data namely baseline 100 (days) and 83 (weeks), naivebayes 100 (days) and 82 (weeks), maxent 100 (days) and 83 (weeks), and SVM 100 (days) and 83 (weeks).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1