Philipp Korner, M. Leuschel, Joao Barbosa, V. S. Costa, V. Dahl, M. Hermenegildo, J. Morales, J. Wielemaker, Daniel Diaz, Salvador Abreu, Giovanni Ciatto
{"title":"《五十年前瞻","authors":"Philipp Korner, M. Leuschel, Joao Barbosa, V. S. Costa, V. Dahl, M. Hermenegildo, J. Morales, J. Wielemaker, Daniel Diaz, Salvador Abreu, Giovanni Ciatto","doi":"10.1017/s1471068422000102","DOIUrl":null,"url":null,"abstract":"\n Both logic programming in general and Prolog in particular have a long and fascinating history, intermingled with that of many disciplines they inherited from or catalyzed. A large body of research has been gathered over the last 50 years, supported by many Prolog implementations. Many implementations are still actively developed, while new ones keep appearing. Often, the features added by different systems were motivated by the interdisciplinary needs of programmers and implementors, yielding systems that, while sharing the “classic” core language, in particular, the main aspects of the ISO-Prolog standard, also depart from each other in other aspects. This obviously poses challenges for code portability. The field has also inspired many related, but quite different languages that have created their own communities. This article aims at integrating and applying the main lessons learned in the process of evolution of Prolog. It is structured into three major parts. First, we overview the evolution of Prolog systems and the community approximately up to the ISO standard, considering both the main historic developments and the motivations behind several Prolog implementations, as well as other logic programming languages influenced by Prolog. Then, we discuss the Prolog implementations that are most active after the appearance of the standard: their visions, goals, commonalities, and incompatibilities. Finally, we perform a SWOT analysis in order to better identify the potential of Prolog and propose future directions along with which Prolog might continue to add useful features, interfaces, libraries, and tools, while at the same time improving compatibility between implementations.","PeriodicalId":49436,"journal":{"name":"Theory and Practice of Logic Programming","volume":"88 1","pages":"776-858"},"PeriodicalIF":1.4000,"publicationDate":"2022-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Fifty Years of Prolog and Beyond\",\"authors\":\"Philipp Korner, M. Leuschel, Joao Barbosa, V. S. Costa, V. Dahl, M. Hermenegildo, J. Morales, J. Wielemaker, Daniel Diaz, Salvador Abreu, Giovanni Ciatto\",\"doi\":\"10.1017/s1471068422000102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Both logic programming in general and Prolog in particular have a long and fascinating history, intermingled with that of many disciplines they inherited from or catalyzed. A large body of research has been gathered over the last 50 years, supported by many Prolog implementations. Many implementations are still actively developed, while new ones keep appearing. Often, the features added by different systems were motivated by the interdisciplinary needs of programmers and implementors, yielding systems that, while sharing the “classic” core language, in particular, the main aspects of the ISO-Prolog standard, also depart from each other in other aspects. This obviously poses challenges for code portability. The field has also inspired many related, but quite different languages that have created their own communities. This article aims at integrating and applying the main lessons learned in the process of evolution of Prolog. It is structured into three major parts. First, we overview the evolution of Prolog systems and the community approximately up to the ISO standard, considering both the main historic developments and the motivations behind several Prolog implementations, as well as other logic programming languages influenced by Prolog. Then, we discuss the Prolog implementations that are most active after the appearance of the standard: their visions, goals, commonalities, and incompatibilities. Finally, we perform a SWOT analysis in order to better identify the potential of Prolog and propose future directions along with which Prolog might continue to add useful features, interfaces, libraries, and tools, while at the same time improving compatibility between implementations.\",\"PeriodicalId\":49436,\"journal\":{\"name\":\"Theory and Practice of Logic Programming\",\"volume\":\"88 1\",\"pages\":\"776-858\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory and Practice of Logic Programming\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1017/s1471068422000102\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory and Practice of Logic Programming","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s1471068422000102","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Both logic programming in general and Prolog in particular have a long and fascinating history, intermingled with that of many disciplines they inherited from or catalyzed. A large body of research has been gathered over the last 50 years, supported by many Prolog implementations. Many implementations are still actively developed, while new ones keep appearing. Often, the features added by different systems were motivated by the interdisciplinary needs of programmers and implementors, yielding systems that, while sharing the “classic” core language, in particular, the main aspects of the ISO-Prolog standard, also depart from each other in other aspects. This obviously poses challenges for code portability. The field has also inspired many related, but quite different languages that have created their own communities. This article aims at integrating and applying the main lessons learned in the process of evolution of Prolog. It is structured into three major parts. First, we overview the evolution of Prolog systems and the community approximately up to the ISO standard, considering both the main historic developments and the motivations behind several Prolog implementations, as well as other logic programming languages influenced by Prolog. Then, we discuss the Prolog implementations that are most active after the appearance of the standard: their visions, goals, commonalities, and incompatibilities. Finally, we perform a SWOT analysis in order to better identify the potential of Prolog and propose future directions along with which Prolog might continue to add useful features, interfaces, libraries, and tools, while at the same time improving compatibility between implementations.
期刊介绍:
Theory and Practice of Logic Programming emphasises both the theory and practice of logic programming. Logic programming applies to all areas of artificial intelligence and computer science and is fundamental to them. Among the topics covered are AI applications that use logic programming, logic programming methodologies, specification, analysis and verification of systems, inductive logic programming, multi-relational data mining, natural language processing, knowledge representation, non-monotonic reasoning, semantic web reasoning, databases, implementations and architectures and constraint logic programming.