提高高粘度减阻剂HVFRs在盐水中的性能

Alhad Phatak, B. Seymour, Ginger Ren, Isaias Gonzalez
{"title":"提高高粘度减阻剂HVFRs在盐水中的性能","authors":"Alhad Phatak, B. Seymour, Ginger Ren, Isaias Gonzalez","doi":"10.2118/204339-ms","DOIUrl":null,"url":null,"abstract":"\n High Viscosity Friction Reducers (HVFRs) are often employed in hydraulic fracturing fluids to increase the proppant carrying capacity of slickwater fluids. However, it has been widely reported that the performance of HVFR fluids drops precipitously with even small amounts of salt. This study explores and reports the use of surfactants to alleviate the loss of performance of HVFR fluids due to salinity in the mix water. Fracturing fluids were prepared in the laboratory by mixing the HVFR at concentrations between 2 and 8 gal/1,000 gal with and without surfactant formulations. The viscosities of the fluids were measured on a TA Instruments DHR-3 rheometer using a concentric cylinder geometry. Both anionic and cationic HVFRs were tested with various surfactants. As expected, we observed that HVFR fluids display dramatic loss of viscosity with the addition of as little as 1% salt to the mix water. However, certain surfactant formulations were found to provide a significant boost in viscosity of HVFR fluids in brines over a wide range of shear rates. Increases in viscosity by a factor of as much as 10 times were observed, particularly at low shear rates. The ability of the surfactant formulations to enhance fluid viscosity was observed in both monovalent and divalent model brines, as well as brines that mimicked field produced water compositions. In addition, measurements were also performed in a slot flow device to determine if the results from the rheometer translated to proppant transport characteristics of the fluids. The slot flow results were found to correlate well with fluid viscosity measurements. The fluids containing the surfactant formulation transported nearly 4 times as much proppant as fluids not containing surfactant through a 2.5 ft. long rectangular slot of 0.5 in. thickness at a proppant concentration of 2 lb/gal. An obvious benefit of the approach proposed in this study is that it can enable the use of HVFR fluids in recycled and produced waters, providing both cost and sustainability benefits. Secondly, these surfactant formulations can reduce the amount of HVFR required to obtain a certain target viscosity in brine, thereby reducing the likelihood and potential severity of formation damage from HVFR residue.","PeriodicalId":10910,"journal":{"name":"Day 2 Tue, December 07, 2021","volume":"145 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Enhancing Performance of High Viscosity Friction Reducers HVFRs in Brine\",\"authors\":\"Alhad Phatak, B. Seymour, Ginger Ren, Isaias Gonzalez\",\"doi\":\"10.2118/204339-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n High Viscosity Friction Reducers (HVFRs) are often employed in hydraulic fracturing fluids to increase the proppant carrying capacity of slickwater fluids. However, it has been widely reported that the performance of HVFR fluids drops precipitously with even small amounts of salt. This study explores and reports the use of surfactants to alleviate the loss of performance of HVFR fluids due to salinity in the mix water. Fracturing fluids were prepared in the laboratory by mixing the HVFR at concentrations between 2 and 8 gal/1,000 gal with and without surfactant formulations. The viscosities of the fluids were measured on a TA Instruments DHR-3 rheometer using a concentric cylinder geometry. Both anionic and cationic HVFRs were tested with various surfactants. As expected, we observed that HVFR fluids display dramatic loss of viscosity with the addition of as little as 1% salt to the mix water. However, certain surfactant formulations were found to provide a significant boost in viscosity of HVFR fluids in brines over a wide range of shear rates. Increases in viscosity by a factor of as much as 10 times were observed, particularly at low shear rates. The ability of the surfactant formulations to enhance fluid viscosity was observed in both monovalent and divalent model brines, as well as brines that mimicked field produced water compositions. In addition, measurements were also performed in a slot flow device to determine if the results from the rheometer translated to proppant transport characteristics of the fluids. The slot flow results were found to correlate well with fluid viscosity measurements. The fluids containing the surfactant formulation transported nearly 4 times as much proppant as fluids not containing surfactant through a 2.5 ft. long rectangular slot of 0.5 in. thickness at a proppant concentration of 2 lb/gal. An obvious benefit of the approach proposed in this study is that it can enable the use of HVFR fluids in recycled and produced waters, providing both cost and sustainability benefits. Secondly, these surfactant formulations can reduce the amount of HVFR required to obtain a certain target viscosity in brine, thereby reducing the likelihood and potential severity of formation damage from HVFR residue.\",\"PeriodicalId\":10910,\"journal\":{\"name\":\"Day 2 Tue, December 07, 2021\",\"volume\":\"145 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Tue, December 07, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/204339-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, December 07, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/204339-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

高粘度减阻剂(hvrs)常用于水力压裂液中,以提高滑溜水的支撑剂携砂能力。然而,据广泛报道,即使少量盐,HVFR流体的性能也会急剧下降。本研究探索并报道了使用表面活性剂来减轻混合水中含盐量对HVFR流体性能的影响。在实验室中,将HVFR以2 ~ 8gal / 1000gal的浓度与表面活性剂配方混合,制备压裂液。流体的粘度在TA Instruments DHR-3流变仪上测量,采用同心圆柱体几何形状。阴离子型和阳离子型hvrs用不同的表面活性剂进行了测试。正如预期的那样,我们观察到,在混合水中加入1%的盐,HVFR流体的粘度就会急剧下降。然而,某些表面活性剂配方可以在很大的剪切速率范围内显著提高盐水中HVFR流体的粘度。观察到粘度增加了10倍,特别是在低剪切速率下。在单价和二价盐水模型中,以及模拟油田产出水成分的盐水中,都观察到了表面活性剂配方提高流体粘度的能力。此外,还在槽流装置中进行了测量,以确定流变仪的结果是否转化为流体的支撑剂输送特性。狭缝流动结果与流体粘度测量结果有很好的相关性。含有表面活性剂配方的流体通过2.5英尺长、0.5英寸的矩形槽输送的支撑剂量几乎是不含表面活性剂的流体的4倍。支撑剂浓度为2lb /gal时的厚度。本研究中提出的方法的一个明显好处是,它可以在回收水和采出水中使用HVFR流体,从而提供成本和可持续性效益。其次,这些表面活性剂配方可以减少在盐水中获得一定目标粘度所需的HVFR量,从而降低HVFR残留对地层造成损害的可能性和潜在严重程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing Performance of High Viscosity Friction Reducers HVFRs in Brine
High Viscosity Friction Reducers (HVFRs) are often employed in hydraulic fracturing fluids to increase the proppant carrying capacity of slickwater fluids. However, it has been widely reported that the performance of HVFR fluids drops precipitously with even small amounts of salt. This study explores and reports the use of surfactants to alleviate the loss of performance of HVFR fluids due to salinity in the mix water. Fracturing fluids were prepared in the laboratory by mixing the HVFR at concentrations between 2 and 8 gal/1,000 gal with and without surfactant formulations. The viscosities of the fluids were measured on a TA Instruments DHR-3 rheometer using a concentric cylinder geometry. Both anionic and cationic HVFRs were tested with various surfactants. As expected, we observed that HVFR fluids display dramatic loss of viscosity with the addition of as little as 1% salt to the mix water. However, certain surfactant formulations were found to provide a significant boost in viscosity of HVFR fluids in brines over a wide range of shear rates. Increases in viscosity by a factor of as much as 10 times were observed, particularly at low shear rates. The ability of the surfactant formulations to enhance fluid viscosity was observed in both monovalent and divalent model brines, as well as brines that mimicked field produced water compositions. In addition, measurements were also performed in a slot flow device to determine if the results from the rheometer translated to proppant transport characteristics of the fluids. The slot flow results were found to correlate well with fluid viscosity measurements. The fluids containing the surfactant formulation transported nearly 4 times as much proppant as fluids not containing surfactant through a 2.5 ft. long rectangular slot of 0.5 in. thickness at a proppant concentration of 2 lb/gal. An obvious benefit of the approach proposed in this study is that it can enable the use of HVFR fluids in recycled and produced waters, providing both cost and sustainability benefits. Secondly, these surfactant formulations can reduce the amount of HVFR required to obtain a certain target viscosity in brine, thereby reducing the likelihood and potential severity of formation damage from HVFR residue.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dry Cationic Friction Reducers: New Alternative for High TDS Slickwater Metagenomics Microbial Characterization of Production and Process Fluids in the Powder River Basin: Identification and Sources of Problematic Microorganisms Associated with SWD Facilities Electrochemically Assisted Deposition of Calcium Carbonate Surfaces for Anionic Surfactant Adsorption: Implications for Enhanced Oil Recovery Ranking Anti-Agglomerant Efficiency for Gas Hydrates Through Molecular Dynamic Simulations Seawater Breakthrough Monitoring and Reservoir-Model Improvement Using Natural Boron
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1