{"title":"三维卷积神经网络在单深度图像手部姿态估计中的应用","authors":"Liuhao Ge, Hui Liang, Junsong Yuan, D. Thalmann","doi":"10.1109/CVPR.2017.602","DOIUrl":null,"url":null,"abstract":"We propose a simple, yet effective approach for real-time hand pose estimation from single depth images using three-dimensional Convolutional Neural Networks (3D CNNs). Image based features extracted by 2D CNNs are not directly suitable for 3D hand pose estimation due to the lack of 3D spatial information. Our proposed 3D CNN taking a 3D volumetric representation of the hand depth image as input can capture the 3D spatial structure of the input and accurately regress full 3D hand pose in a single pass. In order to make the 3D CNN robust to variations in hand sizes and global orientations, we perform 3D data augmentation on the training data. Experiments show that our proposed 3D CNN based approach outperforms state-of-the-art methods on two challenging hand pose datasets, and is very efficient as our implementation runs at over 215 fps on a standard computer with a single GPU.","PeriodicalId":6631,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"6 1","pages":"5679-5688"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"243","resultStr":"{\"title\":\"3D Convolutional Neural Networks for Efficient and Robust Hand Pose Estimation from Single Depth Images\",\"authors\":\"Liuhao Ge, Hui Liang, Junsong Yuan, D. Thalmann\",\"doi\":\"10.1109/CVPR.2017.602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a simple, yet effective approach for real-time hand pose estimation from single depth images using three-dimensional Convolutional Neural Networks (3D CNNs). Image based features extracted by 2D CNNs are not directly suitable for 3D hand pose estimation due to the lack of 3D spatial information. Our proposed 3D CNN taking a 3D volumetric representation of the hand depth image as input can capture the 3D spatial structure of the input and accurately regress full 3D hand pose in a single pass. In order to make the 3D CNN robust to variations in hand sizes and global orientations, we perform 3D data augmentation on the training data. Experiments show that our proposed 3D CNN based approach outperforms state-of-the-art methods on two challenging hand pose datasets, and is very efficient as our implementation runs at over 215 fps on a standard computer with a single GPU.\",\"PeriodicalId\":6631,\"journal\":{\"name\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"6 1\",\"pages\":\"5679-5688\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"243\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2017.602\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2017.602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
3D Convolutional Neural Networks for Efficient and Robust Hand Pose Estimation from Single Depth Images
We propose a simple, yet effective approach for real-time hand pose estimation from single depth images using three-dimensional Convolutional Neural Networks (3D CNNs). Image based features extracted by 2D CNNs are not directly suitable for 3D hand pose estimation due to the lack of 3D spatial information. Our proposed 3D CNN taking a 3D volumetric representation of the hand depth image as input can capture the 3D spatial structure of the input and accurately regress full 3D hand pose in a single pass. In order to make the 3D CNN robust to variations in hand sizes and global orientations, we perform 3D data augmentation on the training data. Experiments show that our proposed 3D CNN based approach outperforms state-of-the-art methods on two challenging hand pose datasets, and is very efficient as our implementation runs at over 215 fps on a standard computer with a single GPU.