大规模MIMO系统的发射天线选择辅助线性群预编码

V. Dinh, Minh-Tuan Le, Vu-Duc Ngo, X. Tran, C. Ta
{"title":"大规模MIMO系统的发射天线选择辅助线性群预编码","authors":"V. Dinh, Minh-Tuan Le, Vu-Duc Ngo, X. Tran, C. Ta","doi":"10.4108/eai.24-10-2019.160982","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the combination of linear group precoding with a transmit antenna group selection (TA-GS) algorithm based on the channel capacity analysis for Massive MIMO systems. Simultaneously, we propose a low complexity linear precoding algorithm that works on the selected antennas. The proposed precoder is developed based on the conventional linear precoders in combination with the element-base lattice reduction shortest longest vector technique having low complexity. Numerical and simulation results show that the system performance significantly improves when the transmit selection technique is applied. Besides, the proposed precoder has remarkably lower computational complexity than its LC-RBD-LR-ZF counterpart. The bit error rate (BER) performance of the proposed precoder can approach that of the LC-RBD-LR-ZF precoder as the number of groups increases, yet at the cost of higher detection complexity.","PeriodicalId":33474,"journal":{"name":"EAI Endorsed Transactions on Industrial Networks and Intelligent Systems","volume":"113 1","pages":"e2"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Transmit Antenna Selection Aided Linear Group Precoding for Massive MIMO Systems\",\"authors\":\"V. Dinh, Minh-Tuan Le, Vu-Duc Ngo, X. Tran, C. Ta\",\"doi\":\"10.4108/eai.24-10-2019.160982\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the combination of linear group precoding with a transmit antenna group selection (TA-GS) algorithm based on the channel capacity analysis for Massive MIMO systems. Simultaneously, we propose a low complexity linear precoding algorithm that works on the selected antennas. The proposed precoder is developed based on the conventional linear precoders in combination with the element-base lattice reduction shortest longest vector technique having low complexity. Numerical and simulation results show that the system performance significantly improves when the transmit selection technique is applied. Besides, the proposed precoder has remarkably lower computational complexity than its LC-RBD-LR-ZF counterpart. The bit error rate (BER) performance of the proposed precoder can approach that of the LC-RBD-LR-ZF precoder as the number of groups increases, yet at the cost of higher detection complexity.\",\"PeriodicalId\":33474,\"journal\":{\"name\":\"EAI Endorsed Transactions on Industrial Networks and Intelligent Systems\",\"volume\":\"113 1\",\"pages\":\"e2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EAI Endorsed Transactions on Industrial Networks and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4108/eai.24-10-2019.160982\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EAI Endorsed Transactions on Industrial Networks and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4108/eai.24-10-2019.160982","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了基于信道容量分析的大规模MIMO系统中线性群预编码与发射天线群选择(TA-GS)算法的结合。同时,我们提出了一种适用于所选天线的低复杂度线性预编码算法。该预编码器是在传统线性预编码器的基础上,结合低复杂度的元基格约简最短最长向量技术开发的。数值和仿真结果表明,采用发射选择技术后,系统性能有了明显提高。此外,该预编码器的计算复杂度明显低于LC-RBD-LR-ZF预编码器。随着分组数的增加,该预编码器的误码率(BER)性能可以接近LC-RBD-LR-ZF预编码器,但代价是更高的检测复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transmit Antenna Selection Aided Linear Group Precoding for Massive MIMO Systems
In this paper, we investigate the combination of linear group precoding with a transmit antenna group selection (TA-GS) algorithm based on the channel capacity analysis for Massive MIMO systems. Simultaneously, we propose a low complexity linear precoding algorithm that works on the selected antennas. The proposed precoder is developed based on the conventional linear precoders in combination with the element-base lattice reduction shortest longest vector technique having low complexity. Numerical and simulation results show that the system performance significantly improves when the transmit selection technique is applied. Besides, the proposed precoder has remarkably lower computational complexity than its LC-RBD-LR-ZF counterpart. The bit error rate (BER) performance of the proposed precoder can approach that of the LC-RBD-LR-ZF precoder as the number of groups increases, yet at the cost of higher detection complexity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
0.00%
发文量
15
审稿时长
10 weeks
期刊最新文献
ViMedNER: A Medical Named Entity Recognition Dataset for Vietnamese Distributed Spatially Non-Stationary Channel Estimation for Extremely-Large Antenna Systems On the Performance of the Relay Selection in Multi-hop Cluster-based Wireless Networks with Multiple Eavesdroppers Under Equally Correlated Rayleigh Fading Improving Performance of the Typical User in the Indoor Cooperative NOMA Millimeter Wave Networks with Presence of Walls Real-time Single-Channel EOG removal based on Empirical Mode Decomposition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1