{"title":"纺织品在高喷射压力下的面外饱和渗透性和变形测量","authors":"Bjoern Willenbacher, D. May, P. Mitschang","doi":"10.1080/20550340.2022.2064070","DOIUrl":null,"url":null,"abstract":"Abstract Out-of-plane impregnation and high levels of injection pressure are key strategies for cycle time reduction in Liquid Composite Molding processes. The combination of these two strategies provides a promising approach for large volume production of automotive components. In this context, a novel test system is presented, which allows the textile reaction characterization to saturated out-of-plane fluid flow at injection pressure levels of up to 200 bar. For any given engineering textile, the resulting out-of-plane permeability and total hydrodynamic compaction can be measured for different combinations of initial fiber volume content, number of layers and injection pressure. Initial tests on a conventional non-crimp fabric show a compaction-induced out-of-plane permeability decrease for pressure levels up to 95 bar, while for pressure levels between 95 and 170 bar the permeability remains constant. In other words above 95 bar, a further increase in pressure directly pays off in terms of increased flow rate. The identification of such processing windows can be very valuable for process design. Graphical Abstract","PeriodicalId":7243,"journal":{"name":"Advanced Manufacturing: Polymer & Composites Science","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Saturated out-of-plane permeability and deformation metrology of textiles at high levels of injection pressure\",\"authors\":\"Bjoern Willenbacher, D. May, P. Mitschang\",\"doi\":\"10.1080/20550340.2022.2064070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Out-of-plane impregnation and high levels of injection pressure are key strategies for cycle time reduction in Liquid Composite Molding processes. The combination of these two strategies provides a promising approach for large volume production of automotive components. In this context, a novel test system is presented, which allows the textile reaction characterization to saturated out-of-plane fluid flow at injection pressure levels of up to 200 bar. For any given engineering textile, the resulting out-of-plane permeability and total hydrodynamic compaction can be measured for different combinations of initial fiber volume content, number of layers and injection pressure. Initial tests on a conventional non-crimp fabric show a compaction-induced out-of-plane permeability decrease for pressure levels up to 95 bar, while for pressure levels between 95 and 170 bar the permeability remains constant. In other words above 95 bar, a further increase in pressure directly pays off in terms of increased flow rate. The identification of such processing windows can be very valuable for process design. Graphical Abstract\",\"PeriodicalId\":7243,\"journal\":{\"name\":\"Advanced Manufacturing: Polymer & Composites Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Manufacturing: Polymer & Composites Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/20550340.2022.2064070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Manufacturing: Polymer & Composites Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/20550340.2022.2064070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Saturated out-of-plane permeability and deformation metrology of textiles at high levels of injection pressure
Abstract Out-of-plane impregnation and high levels of injection pressure are key strategies for cycle time reduction in Liquid Composite Molding processes. The combination of these two strategies provides a promising approach for large volume production of automotive components. In this context, a novel test system is presented, which allows the textile reaction characterization to saturated out-of-plane fluid flow at injection pressure levels of up to 200 bar. For any given engineering textile, the resulting out-of-plane permeability and total hydrodynamic compaction can be measured for different combinations of initial fiber volume content, number of layers and injection pressure. Initial tests on a conventional non-crimp fabric show a compaction-induced out-of-plane permeability decrease for pressure levels up to 95 bar, while for pressure levels between 95 and 170 bar the permeability remains constant. In other words above 95 bar, a further increase in pressure directly pays off in terms of increased flow rate. The identification of such processing windows can be very valuable for process design. Graphical Abstract