LNG资产综合现场管理系统:通过代表性端到端建模实现资产价值最大化

O. H. Khan, Samad Ali, M. A. Elfeel, S. Biniwale, R. Dandekar
{"title":"LNG资产综合现场管理系统:通过代表性端到端建模实现资产价值最大化","authors":"O. H. Khan, Samad Ali, M. A. Elfeel, S. Biniwale, R. Dandekar","doi":"10.2118/205969-ms","DOIUrl":null,"url":null,"abstract":"\n Effective asset-level decision-making relies on a sound understanding of the complex sub-components of the hydrocarbon production system, their interactions, along with an overarching evaluation of the asset's economic performance under different operational strategies. This is especially true for the LNG upstream production system, from the reservoir to the LNG export facility, due to the complex constraints imposed by the gas processing and liquefaction plant. The evolution of the production characteristics over the asset lifetime poses a challenge to the continued and efficient operation of the LNG facility. To ensure a competitive landed LNG cost for the customer, the economics of the production system must be optimized, particularly the liquefaction costs which form the bulk of the operating expenditure of the LNG supply chain. Forecasting and optimizing the production of natural gas liquids helps improve the asset economics. The risks due to demand uncertainty must also be assessed when comparing development alternatives.\n This paper describes the application of a comprehensive field management framework that can create an integrated virtual asset by coupling reservoir, wells, network, facilities, and economics models and provides an advisory system for efficient asset management. In continuation of previously published work (Khan, Ali, Elfeel, Biniwale, & Dandekar, 2020), this paper focuses on the integration of a steady-state process simulation model that provides high-fidelity thermo-physical property prediction to represent the gas treatment and LNG plant operation. This is accomplished through the Python-enabled extensibility and generic capability of the field management system. This is demonstrated on a complex LNG asset that is fed by sour gas of varying compositions from multiple reservoirs. An asset wide economics model is also incorporated in the integrated model to assess the economic performance and viability of competing strategies.\n The impact of changes to the wells and production network system on LNG plant operation is analyzed along with the long-term evolution of the inlet stream specifications. The end-to-end integration enables component tracking throughout the flowing system over time which is useful for contractual and environmental compliance. Integrated economics captures costs at all levels and enables the comparison of development alternatives.\n Flexible integration of the dedicated domain models reveals interactions that can be otherwise overlooked. The ability of the integrated field management system to allow the modeling of the sub-systems at the ‘right’ level of fidelity makes the solution versatile and adaptable. In addition, the integration of economics enables the maximization of total asset value by improving decision making.","PeriodicalId":10928,"journal":{"name":"Day 2 Wed, September 22, 2021","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Integrated Field Management System for LNG Assets: Maximizing Asset Value Through Representative End-To-End Modeling\",\"authors\":\"O. H. Khan, Samad Ali, M. A. Elfeel, S. Biniwale, R. Dandekar\",\"doi\":\"10.2118/205969-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Effective asset-level decision-making relies on a sound understanding of the complex sub-components of the hydrocarbon production system, their interactions, along with an overarching evaluation of the asset's economic performance under different operational strategies. This is especially true for the LNG upstream production system, from the reservoir to the LNG export facility, due to the complex constraints imposed by the gas processing and liquefaction plant. The evolution of the production characteristics over the asset lifetime poses a challenge to the continued and efficient operation of the LNG facility. To ensure a competitive landed LNG cost for the customer, the economics of the production system must be optimized, particularly the liquefaction costs which form the bulk of the operating expenditure of the LNG supply chain. Forecasting and optimizing the production of natural gas liquids helps improve the asset economics. The risks due to demand uncertainty must also be assessed when comparing development alternatives.\\n This paper describes the application of a comprehensive field management framework that can create an integrated virtual asset by coupling reservoir, wells, network, facilities, and economics models and provides an advisory system for efficient asset management. In continuation of previously published work (Khan, Ali, Elfeel, Biniwale, & Dandekar, 2020), this paper focuses on the integration of a steady-state process simulation model that provides high-fidelity thermo-physical property prediction to represent the gas treatment and LNG plant operation. This is accomplished through the Python-enabled extensibility and generic capability of the field management system. This is demonstrated on a complex LNG asset that is fed by sour gas of varying compositions from multiple reservoirs. An asset wide economics model is also incorporated in the integrated model to assess the economic performance and viability of competing strategies.\\n The impact of changes to the wells and production network system on LNG plant operation is analyzed along with the long-term evolution of the inlet stream specifications. The end-to-end integration enables component tracking throughout the flowing system over time which is useful for contractual and environmental compliance. Integrated economics captures costs at all levels and enables the comparison of development alternatives.\\n Flexible integration of the dedicated domain models reveals interactions that can be otherwise overlooked. The ability of the integrated field management system to allow the modeling of the sub-systems at the ‘right’ level of fidelity makes the solution versatile and adaptable. In addition, the integration of economics enables the maximization of total asset value by improving decision making.\",\"PeriodicalId\":10928,\"journal\":{\"name\":\"Day 2 Wed, September 22, 2021\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Wed, September 22, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/205969-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, September 22, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/205969-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

有效的资产级决策依赖于对油气生产系统的复杂子组件及其相互作用的充分理解,以及对不同运营策略下资产经济表现的总体评估。由于天然气处理和液化工厂施加的复杂限制,对于从储层到液化天然气出口设施的液化天然气上游生产系统尤其如此。随着资产生命周期的发展,生产特征的演变对液化天然气设施的持续高效运行提出了挑战。为了确保为客户提供具有竞争力的着陆液化天然气成本,必须优化生产系统的经济效益,特别是液化成本,这构成了液化天然气供应链的大部分运营支出。预测和优化液化天然气的产量有助于提高资产经济性。在比较备选开发方案时,还必须评估需求不确定性带来的风险。本文介绍了一种综合现场管理框架的应用,该框架可以通过耦合油藏、井、网络、设施和经济模型来创建集成的虚拟资产,并为有效的资产管理提供咨询系统。作为之前发表的工作(Khan, Ali, Elfeel, Biniwale, & Dandekar, 2020)的延续,本文重点关注稳态过程模拟模型的集成,该模型提供高保真的热物理性质预测,以代表天然气处理和液化天然气工厂的运行。这是通过启用python的可扩展性和字段管理系统的通用功能来实现的。这在一个复杂的液化天然气资产上得到了证明,该资产由来自多个储层的不同成分的酸性气体供气。综合模型中还纳入了资产范围经济模型,以评估竞争策略的经济绩效和可行性。随着进口流规格的长期演变,分析了井和生产网络系统的变化对LNG工厂运行的影响。端到端集成支持在整个流动系统中随时间跟踪组件,这对于合同和环境遵从性非常有用。综合经济学涵盖所有层面的成本,并能够比较各种发展选择。专用领域模型的灵活集成揭示了可能被忽视的交互。集成现场管理系统允许在“正确”的保真度级别上对子系统进行建模的能力使解决方案具有通用性和适应性。此外,经济学的整合通过改进决策使总资产价值最大化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integrated Field Management System for LNG Assets: Maximizing Asset Value Through Representative End-To-End Modeling
Effective asset-level decision-making relies on a sound understanding of the complex sub-components of the hydrocarbon production system, their interactions, along with an overarching evaluation of the asset's economic performance under different operational strategies. This is especially true for the LNG upstream production system, from the reservoir to the LNG export facility, due to the complex constraints imposed by the gas processing and liquefaction plant. The evolution of the production characteristics over the asset lifetime poses a challenge to the continued and efficient operation of the LNG facility. To ensure a competitive landed LNG cost for the customer, the economics of the production system must be optimized, particularly the liquefaction costs which form the bulk of the operating expenditure of the LNG supply chain. Forecasting and optimizing the production of natural gas liquids helps improve the asset economics. The risks due to demand uncertainty must also be assessed when comparing development alternatives. This paper describes the application of a comprehensive field management framework that can create an integrated virtual asset by coupling reservoir, wells, network, facilities, and economics models and provides an advisory system for efficient asset management. In continuation of previously published work (Khan, Ali, Elfeel, Biniwale, & Dandekar, 2020), this paper focuses on the integration of a steady-state process simulation model that provides high-fidelity thermo-physical property prediction to represent the gas treatment and LNG plant operation. This is accomplished through the Python-enabled extensibility and generic capability of the field management system. This is demonstrated on a complex LNG asset that is fed by sour gas of varying compositions from multiple reservoirs. An asset wide economics model is also incorporated in the integrated model to assess the economic performance and viability of competing strategies. The impact of changes to the wells and production network system on LNG plant operation is analyzed along with the long-term evolution of the inlet stream specifications. The end-to-end integration enables component tracking throughout the flowing system over time which is useful for contractual and environmental compliance. Integrated economics captures costs at all levels and enables the comparison of development alternatives. Flexible integration of the dedicated domain models reveals interactions that can be otherwise overlooked. The ability of the integrated field management system to allow the modeling of the sub-systems at the ‘right’ level of fidelity makes the solution versatile and adaptable. In addition, the integration of economics enables the maximization of total asset value by improving decision making.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamics of Wettability Alteration from Alkali/Nanoparticles/Polymer Flooding - Integrating Data of Imbibition, Contact Angle and Interfacial-Tension to Screen Injection Agents Benchmarking and Field-Testing of the Distributed Quasi-Newton Derivative-Free Optimization Method for Field Development Optimization Aplicability of an Innovative and Light Seismic Approach to Monitor SAGD Operations in Surmont: A Blind Test Four Simple Questions: Decision-Centered Risk and Project Management Gas Migration in Wellbores During Pressurized Mud Cap Drilling PMCD
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1