{"title":"缺氧增加未分化Caco-2细胞中磷脂酸和溶血磷脂的细胞水平","authors":"Yoshibumi Shimizu, Keiko Tamiya-Koizumi, Toshihiko Tsutsumi, Mamoru Kyogashima, Reiji Kannagi, Soichiro Iwaki, Mineyoshi Aoyama, Akira Tokumura","doi":"10.1002/lipd.12366","DOIUrl":null,"url":null,"abstract":"<p>Cancer cells are known to survive in a hypoxic microenvironment by altering their lipid metabolism as well as their energy metabolism. In this study, Caco-2 cells derived from human colon cancer, were found to have elevated intracellular levels of phosphatidic acid and its lysoform, lysophosphatidic acid (LPA), under hypoxic conditions. Our results suggested that the elevation of LPA in Caco-2 cells was mainly due to the combined increases in cellular levels of lysophosphatidylcholine and lysophosphatidylethanolamine by phospholipase A<sub>2</sub> and subsequent hydrolysis to LPA by lysophospholipase D. We detected the Ca<sup>2+</sup>-stimulated choline-producing activities toward exogenous lysophosphatidylcholines in whole Caco-2 cell homogenates, indicating their involvement in the LPA production in intact Caco-2 cells.</p>","PeriodicalId":18086,"journal":{"name":"Lipids","volume":"58 2","pages":"93-103"},"PeriodicalIF":1.8000,"publicationDate":"2023-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hypoxia increases cellular levels of phosphatidic acid and lysophospholipids in undifferentiated Caco-2 cells\",\"authors\":\"Yoshibumi Shimizu, Keiko Tamiya-Koizumi, Toshihiko Tsutsumi, Mamoru Kyogashima, Reiji Kannagi, Soichiro Iwaki, Mineyoshi Aoyama, Akira Tokumura\",\"doi\":\"10.1002/lipd.12366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cancer cells are known to survive in a hypoxic microenvironment by altering their lipid metabolism as well as their energy metabolism. In this study, Caco-2 cells derived from human colon cancer, were found to have elevated intracellular levels of phosphatidic acid and its lysoform, lysophosphatidic acid (LPA), under hypoxic conditions. Our results suggested that the elevation of LPA in Caco-2 cells was mainly due to the combined increases in cellular levels of lysophosphatidylcholine and lysophosphatidylethanolamine by phospholipase A<sub>2</sub> and subsequent hydrolysis to LPA by lysophospholipase D. We detected the Ca<sup>2+</sup>-stimulated choline-producing activities toward exogenous lysophosphatidylcholines in whole Caco-2 cell homogenates, indicating their involvement in the LPA production in intact Caco-2 cells.</p>\",\"PeriodicalId\":18086,\"journal\":{\"name\":\"Lipids\",\"volume\":\"58 2\",\"pages\":\"93-103\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2023-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lipids\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/lipd.12366\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lipids","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lipd.12366","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Hypoxia increases cellular levels of phosphatidic acid and lysophospholipids in undifferentiated Caco-2 cells
Cancer cells are known to survive in a hypoxic microenvironment by altering their lipid metabolism as well as their energy metabolism. In this study, Caco-2 cells derived from human colon cancer, were found to have elevated intracellular levels of phosphatidic acid and its lysoform, lysophosphatidic acid (LPA), under hypoxic conditions. Our results suggested that the elevation of LPA in Caco-2 cells was mainly due to the combined increases in cellular levels of lysophosphatidylcholine and lysophosphatidylethanolamine by phospholipase A2 and subsequent hydrolysis to LPA by lysophospholipase D. We detected the Ca2+-stimulated choline-producing activities toward exogenous lysophosphatidylcholines in whole Caco-2 cell homogenates, indicating their involvement in the LPA production in intact Caco-2 cells.
期刊介绍:
Lipids is a journal of the American Oil Chemists'' Society (AOCS) that focuses on publishing high-quality peer-reviewed papers and invited reviews in the general area of lipid research, including chemistry, biochemistry, clinical nutrition, and metabolism. In addition, Lipids publishes papers establishing novel methods for addressing research questions in the field of lipid research.