从人体汗液中鉴定终末期肾脏疾病的代谢特征

IF 2.6 Q2 MULTIDISCIPLINARY SCIENCES Natural sciences (Weinheim, Germany) Pub Date : 2023-01-09 DOI:10.1002/ntls.20220048
Vishnu Shankar, Basil Michael, A. Celli, Zhenpeng Zhou, Melanie D. Ashland, R. Tibshirani, M. Snyder, R. Zare
{"title":"从人体汗液中鉴定终末期肾脏疾病的代谢特征","authors":"Vishnu Shankar, Basil Michael, A. Celli, Zhenpeng Zhou, Melanie D. Ashland, R. Tibshirani, M. Snyder, R. Zare","doi":"10.1002/ntls.20220048","DOIUrl":null,"url":null,"abstract":"End stage renal disease (ESRD), characterized by cessation in kidney function, has been linked to severe metabolic disturbances, caused by buildup of toxic solutes in blood. To remove these solutes, ESRD patients undergo dialysis. As a proof of concept, we tested whether ESRD-related metabolic signatures can be detected in perspiration samples using a combined methodology. Our rapid methodology involves swabbing a glass slide across the patient’s forehead, detecting the metabolites in the imprint using desorption electrospray ionization mass spectrometry, and identifying the key differences using machine learning methods. Based on collecting 42 healthy and 27 ESRD samples, we find saturated fatty acids are consistently suppressed in ESRD patients, with little change after dialysis. Also, our method enables the detection of uremic solutes, where we find elevated levels of uric acid (6.7 fold higher on average) that sharply decrease after dialysis. Beyond the study of individual metabolites, we find that a lasso model, which selects for 8 m/z fragments from 24,602 detected analytes, achieves area under the curve performance of 0.85 and 0.87 on training (n=52) and validation sets (n=17) respectively. Together, these results suggest that this methodology is promising for detecting signatures relevant for Precision Health. Hosted file VShankar_Sweat_Analysis_Paper_Final.docx available at https://authorea.com/users/509712/ articles/587032-identification-of-end-stage-renal-disease-metabolic-signatures-fromhuman-perspiration","PeriodicalId":74244,"journal":{"name":"Natural sciences (Weinheim, Germany)","volume":"19 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Identification of end‐stage renal disease metabolic signatures from human perspiration\",\"authors\":\"Vishnu Shankar, Basil Michael, A. Celli, Zhenpeng Zhou, Melanie D. Ashland, R. Tibshirani, M. Snyder, R. Zare\",\"doi\":\"10.1002/ntls.20220048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"End stage renal disease (ESRD), characterized by cessation in kidney function, has been linked to severe metabolic disturbances, caused by buildup of toxic solutes in blood. To remove these solutes, ESRD patients undergo dialysis. As a proof of concept, we tested whether ESRD-related metabolic signatures can be detected in perspiration samples using a combined methodology. Our rapid methodology involves swabbing a glass slide across the patient’s forehead, detecting the metabolites in the imprint using desorption electrospray ionization mass spectrometry, and identifying the key differences using machine learning methods. Based on collecting 42 healthy and 27 ESRD samples, we find saturated fatty acids are consistently suppressed in ESRD patients, with little change after dialysis. Also, our method enables the detection of uremic solutes, where we find elevated levels of uric acid (6.7 fold higher on average) that sharply decrease after dialysis. Beyond the study of individual metabolites, we find that a lasso model, which selects for 8 m/z fragments from 24,602 detected analytes, achieves area under the curve performance of 0.85 and 0.87 on training (n=52) and validation sets (n=17) respectively. Together, these results suggest that this methodology is promising for detecting signatures relevant for Precision Health. Hosted file VShankar_Sweat_Analysis_Paper_Final.docx available at https://authorea.com/users/509712/ articles/587032-identification-of-end-stage-renal-disease-metabolic-signatures-fromhuman-perspiration\",\"PeriodicalId\":74244,\"journal\":{\"name\":\"Natural sciences (Weinheim, Germany)\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Natural sciences (Weinheim, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/ntls.20220048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural sciences (Weinheim, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/ntls.20220048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 1

摘要

终末期肾病(ESRD)以肾功能停止为特征,与血液中有毒溶质积聚引起的严重代谢紊乱有关。为了清除这些溶质,ESRD患者需要进行透析。作为概念验证,我们测试了是否可以使用组合方法在汗液样本中检测到esrd相关的代谢特征。我们的快速方法包括在患者额头上擦拭玻璃载玻片,使用解吸电喷雾电离质谱法检测印记中的代谢物,并使用机器学习方法识别关键差异。通过收集42例健康和27例ESRD样本,我们发现饱和脂肪酸在ESRD患者中持续受到抑制,透析后变化不大。此外,我们的方法可以检测尿毒症溶质,我们发现尿酸水平升高(平均高6.7倍),透析后急剧下降。除了对单个代谢物的研究之外,我们发现lasso模型从24,602个检测到的分析物中选择8个m/z片段,在训练集(n=52)和验证集(n=17)上分别实现了0.85和0.87的曲线下面积性能。总之,这些结果表明,这种方法很有希望检测与精确健康相关的特征。宿主文件VShankar_Sweat_Analysis_Paper_Final.docx可在https://authorea.com/users/509712/ articles/587032- identified -of-end-stage-renal-disease-metabolic-signatures-fromhuman- sweat获取
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identification of end‐stage renal disease metabolic signatures from human perspiration
End stage renal disease (ESRD), characterized by cessation in kidney function, has been linked to severe metabolic disturbances, caused by buildup of toxic solutes in blood. To remove these solutes, ESRD patients undergo dialysis. As a proof of concept, we tested whether ESRD-related metabolic signatures can be detected in perspiration samples using a combined methodology. Our rapid methodology involves swabbing a glass slide across the patient’s forehead, detecting the metabolites in the imprint using desorption electrospray ionization mass spectrometry, and identifying the key differences using machine learning methods. Based on collecting 42 healthy and 27 ESRD samples, we find saturated fatty acids are consistently suppressed in ESRD patients, with little change after dialysis. Also, our method enables the detection of uremic solutes, where we find elevated levels of uric acid (6.7 fold higher on average) that sharply decrease after dialysis. Beyond the study of individual metabolites, we find that a lasso model, which selects for 8 m/z fragments from 24,602 detected analytes, achieves area under the curve performance of 0.85 and 0.87 on training (n=52) and validation sets (n=17) respectively. Together, these results suggest that this methodology is promising for detecting signatures relevant for Precision Health. Hosted file VShankar_Sweat_Analysis_Paper_Final.docx available at https://authorea.com/users/509712/ articles/587032-identification-of-end-stage-renal-disease-metabolic-signatures-fromhuman-perspiration
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Isotope effect suggests site‐specific nonadiabaticity on Ge(111)c(2×8) Automated segmentation of insect anatomy from micro‐CT images using deep learning The propagation of Hermite–Gauss wave packets in optics and quantum mechanics Exhaled aerosols and saliva droplets measured in time and 3D space: Quantification of pathogens flow rate applied to SARS‐CoV‐2 Manipulating tunnelling gateways in condensed phase isomerization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1