水热处理提高了猪粪消化液的能量回收,改善了猪粪残渣的性能。

Dachen Liao, Ke Sun, Chenyang Liu, Qiang Ye, Hailong Luo, Haipeng Sun, Qi Lu, Yili Yang, Ruo He
{"title":"水热处理提高了猪粪消化液的能量回收,改善了猪粪残渣的性能。","authors":"Dachen Liao,&nbsp;Ke Sun,&nbsp;Chenyang Liu,&nbsp;Qiang Ye,&nbsp;Hailong Luo,&nbsp;Haipeng Sun,&nbsp;Qi Lu,&nbsp;Yili Yang,&nbsp;Ruo He","doi":"10.1080/10934529.2023.2176092","DOIUrl":null,"url":null,"abstract":"<p><p>Energy recovery from biowaste is of high significance for a sustainable society. Herein, hydrothermal treatment (HT) was applied to valorize pig manure digestate. The effects of hydrothermal operational parameters, including temperature (130-250 °C), residence time (15-90 min), and total solid (TS) concentration (10%-20%), on reducing sugar yield were investigated in this study. Among them, hydrothermal temperature was identified as the most important factor influencing reducing sugar yield, followed by the TS concentration and time. The optimal hydrothermal conditions for the pig manure digestate were 175.6 °C, 35.4 min and a TS concentration of 10% with a reduced sugar yield of 9.81 mg gTS<sup>-1</sup>. The addition of hydrolysate could enhance methane production by 21.6-50.4% from the anaerobic digestion of pig manure than that without the hydrolysate addition. After HT, the hygienic quality, including fecal coliform number and ascaris egg mortality, was improved in the residual digestate. Antibiotics such as sulfamonomethoxine, oxytetracycline, doxycycline and sulfaclodazine in the pig manure digestate were decomposed during HT and decreased environmental risk. These findings indicated that the hydrothermal process might be an effective technique to recover energy from the digestate of livestock and poultry manure and to improve the residual digestate for subsequent utilization.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":"58 2","pages":"116-126"},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hydrothermal treatment enhances energy recovery from pig manure digestate and improves the properties of residues.\",\"authors\":\"Dachen Liao,&nbsp;Ke Sun,&nbsp;Chenyang Liu,&nbsp;Qiang Ye,&nbsp;Hailong Luo,&nbsp;Haipeng Sun,&nbsp;Qi Lu,&nbsp;Yili Yang,&nbsp;Ruo He\",\"doi\":\"10.1080/10934529.2023.2176092\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Energy recovery from biowaste is of high significance for a sustainable society. Herein, hydrothermal treatment (HT) was applied to valorize pig manure digestate. The effects of hydrothermal operational parameters, including temperature (130-250 °C), residence time (15-90 min), and total solid (TS) concentration (10%-20%), on reducing sugar yield were investigated in this study. Among them, hydrothermal temperature was identified as the most important factor influencing reducing sugar yield, followed by the TS concentration and time. The optimal hydrothermal conditions for the pig manure digestate were 175.6 °C, 35.4 min and a TS concentration of 10% with a reduced sugar yield of 9.81 mg gTS<sup>-1</sup>. The addition of hydrolysate could enhance methane production by 21.6-50.4% from the anaerobic digestion of pig manure than that without the hydrolysate addition. After HT, the hygienic quality, including fecal coliform number and ascaris egg mortality, was improved in the residual digestate. Antibiotics such as sulfamonomethoxine, oxytetracycline, doxycycline and sulfaclodazine in the pig manure digestate were decomposed during HT and decreased environmental risk. These findings indicated that the hydrothermal process might be an effective technique to recover energy from the digestate of livestock and poultry manure and to improve the residual digestate for subsequent utilization.</p>\",\"PeriodicalId\":15671,\"journal\":{\"name\":\"Journal of Environmental Science and Health Part A-toxic\\\\/hazardous Substances & Environmental Engineering\",\"volume\":\"58 2\",\"pages\":\"116-126\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Science and Health Part A-toxic\\\\/hazardous Substances & Environmental Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/10934529.2023.2176092\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10934529.2023.2176092","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 1

摘要

从生物垃圾中回收能源对可持续发展的社会具有重要意义。本文采用水热法对猪粪消化液进行了酸化处理。研究了水热操作温度(130 ~ 250℃)、停留时间(15 ~ 90 min)和总固体(TS)浓度(10% ~ 20%)对还原糖收率的影响。其中,水热温度是影响还原糖收率的最重要因素,其次是TS浓度和时间。猪粪消化液的最佳水热条件为175.6℃,35.4 min, TS浓度为10%,还原糖产量为9.81 mg gTS-1。与不添加水解液相比,添加水解液可使猪粪厌氧消化产甲烷量提高21.6-50.4%。经高温处理后,粪大肠菌群数量和蛔虫卵死亡率等卫生质量得到改善。猪粪消化液中的抗生素磺胺甲氧嘧啶、土霉素、多西环素和磺胺氯dazine在高温下被分解,降低了环境风险。这些结果表明,水热法可以有效地回收畜禽粪便消化液中的能量,并提高剩余消化液的利用率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hydrothermal treatment enhances energy recovery from pig manure digestate and improves the properties of residues.

Energy recovery from biowaste is of high significance for a sustainable society. Herein, hydrothermal treatment (HT) was applied to valorize pig manure digestate. The effects of hydrothermal operational parameters, including temperature (130-250 °C), residence time (15-90 min), and total solid (TS) concentration (10%-20%), on reducing sugar yield were investigated in this study. Among them, hydrothermal temperature was identified as the most important factor influencing reducing sugar yield, followed by the TS concentration and time. The optimal hydrothermal conditions for the pig manure digestate were 175.6 °C, 35.4 min and a TS concentration of 10% with a reduced sugar yield of 9.81 mg gTS-1. The addition of hydrolysate could enhance methane production by 21.6-50.4% from the anaerobic digestion of pig manure than that without the hydrolysate addition. After HT, the hygienic quality, including fecal coliform number and ascaris egg mortality, was improved in the residual digestate. Antibiotics such as sulfamonomethoxine, oxytetracycline, doxycycline and sulfaclodazine in the pig manure digestate were decomposed during HT and decreased environmental risk. These findings indicated that the hydrothermal process might be an effective technique to recover energy from the digestate of livestock and poultry manure and to improve the residual digestate for subsequent utilization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
4.80%
发文量
93
审稿时长
3.0 months
期刊介绍: 14 issues per year Abstracted/indexed in: BioSciences Information Service of Biological Abstracts (BIOSIS), CAB ABSTRACTS, CEABA, Chemical Abstracts & Chemical Safety NewsBase, Current Contents/Agriculture, Biology, and Environmental Sciences, Elsevier BIOBASE/Current Awareness in Biological Sciences, EMBASE/Excerpta Medica, Engineering Index/COMPENDEX PLUS, Environment Abstracts, Environmental Periodicals Bibliography & INIST-Pascal/CNRS, National Agriculture Library-AGRICOLA, NIOSHTIC & Pollution Abstracts, PubSCIENCE, Reference Update, Research Alert & Science Citation Index Expanded (SCIE), Water Resources Abstracts and Index Medicus/MEDLINE.
期刊最新文献
Kinetics and simulation of biodiesel production using a geopolymer heterogenous catalyst. Batch and continuous fixed bed adsorption of copper (II) from acid mine drainage (AMD) using green and recyclable adsorbent from cellulose microcrystals (CMCs). Preparation and characterization of β-cyclodextrin capped magnetic nanoparticles anchored on cellulosic matrix for removal of cr(VI) from mimicked wastewater: Adsorption and kinetic studies. Biogenic and risk elements in wild boar testes and relation to spermatozoa motility. Behavioral and biochemical effects of environmental concentrations of caffeine in zebrafish after long-term exposure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1