H. Zhang, Haoyu Shen, Zhuping Wang, Sheng Gao, Huaicheng Yan
{"title":"多通道网络物理系统的最优DoS攻击:一个Stackelberg博弈分析","authors":"H. Zhang, Haoyu Shen, Zhuping Wang, Sheng Gao, Huaicheng Yan","doi":"10.1051/sands/2023028","DOIUrl":null,"url":null,"abstract":"In this commentary, optimal denial-of-service (DoS) attack strategies on multi-channel cyber-physical systems (CPSs) are considered, which focus on energy allocation on communication channels. For simplicity, a Stackelberg game between one defender and one attacker is constructed. Compared with the existing literature, which mainly pay attention to static equilibrium, the dynamic process of the game is also exhibited in this paper, which fills the gap in the demonstration of dynamic decision-making between both players of the game. In the solution of Stackelberg equilibrium, a self-adaptive particle swarm optimization (PSO) algorithm with Sigmoid-like update function is applied to cope with the nonlinearity of the reward function with faster convergence and wider adaptability. Besides, to acquire better performance of both sides to allocate energy, an online computation algorithm is proposed for dynamic Stackelberg game. Finally, numerical examples are provided to illustrate similarities between theoretic static equilibrium and optimal strategies obtained by Monte Carlo simulations.","PeriodicalId":79641,"journal":{"name":"Hospital security and safety management","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal DoS Attack on Multi-Channel Cyber-Physical Systems: A Stackelberg Game Analysis\",\"authors\":\"H. Zhang, Haoyu Shen, Zhuping Wang, Sheng Gao, Huaicheng Yan\",\"doi\":\"10.1051/sands/2023028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this commentary, optimal denial-of-service (DoS) attack strategies on multi-channel cyber-physical systems (CPSs) are considered, which focus on energy allocation on communication channels. For simplicity, a Stackelberg game between one defender and one attacker is constructed. Compared with the existing literature, which mainly pay attention to static equilibrium, the dynamic process of the game is also exhibited in this paper, which fills the gap in the demonstration of dynamic decision-making between both players of the game. In the solution of Stackelberg equilibrium, a self-adaptive particle swarm optimization (PSO) algorithm with Sigmoid-like update function is applied to cope with the nonlinearity of the reward function with faster convergence and wider adaptability. Besides, to acquire better performance of both sides to allocate energy, an online computation algorithm is proposed for dynamic Stackelberg game. Finally, numerical examples are provided to illustrate similarities between theoretic static equilibrium and optimal strategies obtained by Monte Carlo simulations.\",\"PeriodicalId\":79641,\"journal\":{\"name\":\"Hospital security and safety management\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hospital security and safety management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/sands/2023028\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hospital security and safety management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/sands/2023028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimal DoS Attack on Multi-Channel Cyber-Physical Systems: A Stackelberg Game Analysis
In this commentary, optimal denial-of-service (DoS) attack strategies on multi-channel cyber-physical systems (CPSs) are considered, which focus on energy allocation on communication channels. For simplicity, a Stackelberg game between one defender and one attacker is constructed. Compared with the existing literature, which mainly pay attention to static equilibrium, the dynamic process of the game is also exhibited in this paper, which fills the gap in the demonstration of dynamic decision-making between both players of the game. In the solution of Stackelberg equilibrium, a self-adaptive particle swarm optimization (PSO) algorithm with Sigmoid-like update function is applied to cope with the nonlinearity of the reward function with faster convergence and wider adaptability. Besides, to acquire better performance of both sides to allocate energy, an online computation algorithm is proposed for dynamic Stackelberg game. Finally, numerical examples are provided to illustrate similarities between theoretic static equilibrium and optimal strategies obtained by Monte Carlo simulations.