空间变系数模型的新旧方法

IF 0.6 Q4 ECONOMICS Review of Regional Studies Pub Date : 2021-08-30 DOI:10.52324/001c.27969
D. Lambert
{"title":"空间变系数模型的新旧方法","authors":"D. Lambert","doi":"10.52324/001c.27969","DOIUrl":null,"url":null,"abstract":"This note compares old and new methods for modeling spatial heterogeneity with spatially varying parameter (SVP) models. Older methods considered include spatial expansion, spatial adaptive filtering, and geographically weighted regression. Newer methods that have emerged since the beginning of the 21st include smooth transition autoregression, spatial Gaussian process, and random parameter models with autoregressive processes. A simulation is used to graphically demonstrate differences between the approaches. Regional scientists planning on using any one of these approaches should carefully consider whether the data generating process they are working with is consistent with the assumptions an SVP maintains regarding spatial heterogeneity.","PeriodicalId":44865,"journal":{"name":"Review of Regional Studies","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Old and New Approaches for Spatially Varying Coefficient Models\",\"authors\":\"D. Lambert\",\"doi\":\"10.52324/001c.27969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This note compares old and new methods for modeling spatial heterogeneity with spatially varying parameter (SVP) models. Older methods considered include spatial expansion, spatial adaptive filtering, and geographically weighted regression. Newer methods that have emerged since the beginning of the 21st include smooth transition autoregression, spatial Gaussian process, and random parameter models with autoregressive processes. A simulation is used to graphically demonstrate differences between the approaches. Regional scientists planning on using any one of these approaches should carefully consider whether the data generating process they are working with is consistent with the assumptions an SVP maintains regarding spatial heterogeneity.\",\"PeriodicalId\":44865,\"journal\":{\"name\":\"Review of Regional Studies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Review of Regional Studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52324/001c.27969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Regional Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52324/001c.27969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 1

摘要

本文比较了利用空间变化参数(SVP)模型模拟空间异质性的新旧方法。较老的方法包括空间扩展、空间自适应滤波和地理加权回归。自21世纪初以来出现的新方法包括平滑过渡自回归、空间高斯过程和带有自回归过程的随机参数模型。仿真用于图形化地演示方法之间的差异。计划使用其中任何一种方法的区域科学家都应仔细考虑他们正在使用的数据生成过程是否与SVP关于空间异质性的假设相一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Old and New Approaches for Spatially Varying Coefficient Models
This note compares old and new methods for modeling spatial heterogeneity with spatially varying parameter (SVP) models. Older methods considered include spatial expansion, spatial adaptive filtering, and geographically weighted regression. Newer methods that have emerged since the beginning of the 21st include smooth transition autoregression, spatial Gaussian process, and random parameter models with autoregressive processes. A simulation is used to graphically demonstrate differences between the approaches. Regional scientists planning on using any one of these approaches should carefully consider whether the data generating process they are working with is consistent with the assumptions an SVP maintains regarding spatial heterogeneity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
22.20%
发文量
13
期刊最新文献
Determinants of Rural Migration Intent in Nebraska: Evidence from Rural Survey Data Jointly Modeling the Community Capitals and Their Influence on Economic Resilience Knowledge Spillover Effects and Employment Productivity in the Innovative Startups: Evidence from Italy Economic Development Strategies: Taxes, Incentives, and Public Expenditures Religion and Economic Growth: Evidence from U.S. Counties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1