{"title":"在理想的海底地形上分析海底摩擦对浅水波浪的影响","authors":"Chang Liu, A. Clark","doi":"10.1080/03091929.2023.2204430","DOIUrl":null,"url":null,"abstract":"Analysing the impact of bottom friction on shallow water waves over bottom terrains is important in areas including environmental and coastal engineering as well as the oceanic and atmospheric sciences. However, current theoretical developments rely on making certain limiting assumptions about these flows and thus more development is needed to be able to further generalise this behaviour. This work uses Adomian decomposition method (ADM) to not only develop semi-analytical formulations describing this behaviour, for flat terrains, but also as reverse-engineering mechanisms to develop new closed-form solutions describing this type of phenomena. Specifically, we respectively focus on inertial geostrophic oscillations and anticyclonic vortices with finite escape times in which our results directly demonstrate the direct correlation between the constant Coriolis force, the constant bottom friction, and the overall dynamics. Additionally, we illustrate elements of dissipation-induced instability with respect to constant bottom friction in these types of flows where we also demonstrate the connection to the initial dynamics for certain cases.","PeriodicalId":56132,"journal":{"name":"Geophysical and Astrophysical Fluid Dynamics","volume":"53 1","pages":"107 - 129"},"PeriodicalIF":1.1000,"publicationDate":"2023-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysing the impact of bottom friction on shallow water waves over idealised bottom topographies\",\"authors\":\"Chang Liu, A. Clark\",\"doi\":\"10.1080/03091929.2023.2204430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analysing the impact of bottom friction on shallow water waves over bottom terrains is important in areas including environmental and coastal engineering as well as the oceanic and atmospheric sciences. However, current theoretical developments rely on making certain limiting assumptions about these flows and thus more development is needed to be able to further generalise this behaviour. This work uses Adomian decomposition method (ADM) to not only develop semi-analytical formulations describing this behaviour, for flat terrains, but also as reverse-engineering mechanisms to develop new closed-form solutions describing this type of phenomena. Specifically, we respectively focus on inertial geostrophic oscillations and anticyclonic vortices with finite escape times in which our results directly demonstrate the direct correlation between the constant Coriolis force, the constant bottom friction, and the overall dynamics. Additionally, we illustrate elements of dissipation-induced instability with respect to constant bottom friction in these types of flows where we also demonstrate the connection to the initial dynamics for certain cases.\",\"PeriodicalId\":56132,\"journal\":{\"name\":\"Geophysical and Astrophysical Fluid Dynamics\",\"volume\":\"53 1\",\"pages\":\"107 - 129\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical and Astrophysical Fluid Dynamics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/03091929.2023.2204430\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical and Astrophysical Fluid Dynamics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/03091929.2023.2204430","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Analysing the impact of bottom friction on shallow water waves over idealised bottom topographies
Analysing the impact of bottom friction on shallow water waves over bottom terrains is important in areas including environmental and coastal engineering as well as the oceanic and atmospheric sciences. However, current theoretical developments rely on making certain limiting assumptions about these flows and thus more development is needed to be able to further generalise this behaviour. This work uses Adomian decomposition method (ADM) to not only develop semi-analytical formulations describing this behaviour, for flat terrains, but also as reverse-engineering mechanisms to develop new closed-form solutions describing this type of phenomena. Specifically, we respectively focus on inertial geostrophic oscillations and anticyclonic vortices with finite escape times in which our results directly demonstrate the direct correlation between the constant Coriolis force, the constant bottom friction, and the overall dynamics. Additionally, we illustrate elements of dissipation-induced instability with respect to constant bottom friction in these types of flows where we also demonstrate the connection to the initial dynamics for certain cases.
期刊介绍:
Geophysical and Astrophysical Fluid Dynamics exists for the publication of original research papers and short communications, occasional survey articles and conference reports on the fluid mechanics of the earth and planets, including oceans, atmospheres and interiors, and the fluid mechanics of the sun, stars and other astrophysical objects.
In addition, their magnetohydrodynamic behaviours are investigated. Experimental, theoretical and numerical studies of rotating, stratified and convecting fluids of general interest to geophysicists and astrophysicists appear. Properly interpreted observational results are also published.