商品普通小麦品种抗褐斑病菌的特性研究

Q3 Agricultural and Biological Sciences Plant breeding and biotechnology Pub Date : 2022-08-14 DOI:10.30901/2658-6266-2022-2-o3
N. Kovalenko, E. Shaydayuk, E. Gultyaeva
{"title":"商品普通小麦品种抗褐斑病菌的特性研究","authors":"N. Kovalenko, E. Shaydayuk, E. Gultyaeva","doi":"10.30901/2658-6266-2022-2-o3","DOIUrl":null,"url":null,"abstract":"Tan spot of wheat (pyrenophorosis) is a worldwide spread and economically significant disease of wheat. Growing resistant cultivars is an environmentally friendly method of disease control. The aim of the present work was to assess tan spot resistance in common wheat cultivars recommended for cultivation in the Russian Federation, and to identify the dominant Tsn1 allele using a molecular marker. The assessment involved 39 winter and 31 spring wheat cultivars included in the State Register of Selection Achievement in 2018-2020. Evaluation of wheat resistance was carried out in laboratory conditions under artificial inoculation of seedlings and leaf segments. Two isolates of Pyrenophora tritici-repentis (Died.) Drechs, producing ToxA toxin (I_ToxA) and ToxB toxin (ToxB) were used. The dominant allele of the Tsn1 gene was identified using the Xfcp623 marker. A high level of resistance (R) to both isolates (I_ToxA and I_ToxB) was shown by spring cultivars ‘Grenada’ and ‘Silach’; moderate resistance (MR) was demonstrated by winter cultivars ‘Felicia’ and ‘Akhmat’ and spring cultivars ‘Omskaya 42’, ‘Zauralskaya Zhemchuzhina’, ‘Radmira’, ‘Tarskaya 12’ and ‘Extra’. A resistant reaction (R, MR) to the isolate I_ToxA was typical for 26% of winter cultivars and 45% of spring ones. The number of cultivars resistant to the I_ToxB isolate was significantly higher (59% and 52%, respectively). The total fraction of cultivars resistant to the isolate I_ToxA (reaction R, MR) in the collection of winter wheat was 26% and 45% in the spring wheat collection; while the fractions of cultivars resistant to the I_ToxB isolate in these collections were equal to 59% and 52%, respectively. By using the Xfcp623 marker, the diagnostic product was amplified in winter cultivars ‘Bodry’, ‘Kavalerka’, ‘Timiryazevka 150’, ‘Shef’, ‘Anastasia’, ‘Barynya’, ‘Donskaya Step’, ‘Elanskaya’ and spring cultivars ‘Odeta’, ‘Stolypinskaya 2’, ‘Iren’ 2’ and ‘OMGAU 100’. All these cultivars were moderately susceptible to the isolate I_ToxA, with the exception of ‘Odeta’ and ‘Iren’ 2’, which may indicate a decrease in the expression level of the ToxA gene in genotypes of these cultivars.","PeriodicalId":20582,"journal":{"name":"Plant breeding and biotechnology","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Characterization of commercial common wheat cultivars for resistance to tan spot causative agent\",\"authors\":\"N. Kovalenko, E. Shaydayuk, E. Gultyaeva\",\"doi\":\"10.30901/2658-6266-2022-2-o3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tan spot of wheat (pyrenophorosis) is a worldwide spread and economically significant disease of wheat. Growing resistant cultivars is an environmentally friendly method of disease control. The aim of the present work was to assess tan spot resistance in common wheat cultivars recommended for cultivation in the Russian Federation, and to identify the dominant Tsn1 allele using a molecular marker. The assessment involved 39 winter and 31 spring wheat cultivars included in the State Register of Selection Achievement in 2018-2020. Evaluation of wheat resistance was carried out in laboratory conditions under artificial inoculation of seedlings and leaf segments. Two isolates of Pyrenophora tritici-repentis (Died.) Drechs, producing ToxA toxin (I_ToxA) and ToxB toxin (ToxB) were used. The dominant allele of the Tsn1 gene was identified using the Xfcp623 marker. A high level of resistance (R) to both isolates (I_ToxA and I_ToxB) was shown by spring cultivars ‘Grenada’ and ‘Silach’; moderate resistance (MR) was demonstrated by winter cultivars ‘Felicia’ and ‘Akhmat’ and spring cultivars ‘Omskaya 42’, ‘Zauralskaya Zhemchuzhina’, ‘Radmira’, ‘Tarskaya 12’ and ‘Extra’. A resistant reaction (R, MR) to the isolate I_ToxA was typical for 26% of winter cultivars and 45% of spring ones. The number of cultivars resistant to the I_ToxB isolate was significantly higher (59% and 52%, respectively). The total fraction of cultivars resistant to the isolate I_ToxA (reaction R, MR) in the collection of winter wheat was 26% and 45% in the spring wheat collection; while the fractions of cultivars resistant to the I_ToxB isolate in these collections were equal to 59% and 52%, respectively. By using the Xfcp623 marker, the diagnostic product was amplified in winter cultivars ‘Bodry’, ‘Kavalerka’, ‘Timiryazevka 150’, ‘Shef’, ‘Anastasia’, ‘Barynya’, ‘Donskaya Step’, ‘Elanskaya’ and spring cultivars ‘Odeta’, ‘Stolypinskaya 2’, ‘Iren’ 2’ and ‘OMGAU 100’. All these cultivars were moderately susceptible to the isolate I_ToxA, with the exception of ‘Odeta’ and ‘Iren’ 2’, which may indicate a decrease in the expression level of the ToxA gene in genotypes of these cultivars.\",\"PeriodicalId\":20582,\"journal\":{\"name\":\"Plant breeding and biotechnology\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant breeding and biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30901/2658-6266-2022-2-o3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant breeding and biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30901/2658-6266-2022-2-o3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 1

摘要

小麦褐斑病是一种世界性的小麦病害,具有重要的经济意义。培育抗病品种是一种环境友好型的病害防治方法。本研究的目的是评估俄罗斯推荐栽培的普通小麦品种对黑斑病的抗性,并利用分子标记鉴定Tsn1显性等位基因。本次评估涉及2018-2020年国家选育成果名录中收录的39个冬小麦品种和31个春小麦品种。在室内条件下,对小麦幼苗和叶段进行人工接种,进行抗性评价。两株枯黄热菌(已死亡)使用了产ToxA毒素(I_ToxA)和ToxB毒素(ToxB)的Drechs。利用Xfcp623标记鉴定了Tsn1基因的显性等位基因。春季栽培品种‘Grenada’和‘Silach’对两种毒株(I_ToxA和I_ToxB)均有较高的抗性(R);冬季栽培品种Felicia和Akhmat以及春季栽培品种Omskaya 42、Zauralskaya Zhemchuzhina、Radmira、Tarskaya 12和Extra均表现出中度抗性。26%的冬稻品种和45%的春稻品种对I_ToxA有典型的抗性反应(R, MR)。对I_ToxB分离物具有抗性的品种数量显著增加(分别为59%和52%)。冬小麦中对I_ToxA分离物(反应R、MR)具有抗性的品种占26%,春小麦中占45%;而对I_ToxB分离物具有抗性的品种比例分别为59%和52%。利用Xfcp623标记,将诊断产物扩增到冬季品种‘Bodry’、‘Kavalerka’、‘Timiryazevka 150’、‘Shef’、‘Anastasia’、‘Barynya’、‘Donskaya Step’、‘Elanskaya’和春季品种‘Odeta’、‘Stolypinskaya 2’、‘Iren’2’和‘OMGAU 100’上。除“Odeta”和“Iren’2”外,其余品种均对I_ToxA有中度敏感,这可能表明这些品种的基因型中ToxA基因的表达量有所下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterization of commercial common wheat cultivars for resistance to tan spot causative agent
Tan spot of wheat (pyrenophorosis) is a worldwide spread and economically significant disease of wheat. Growing resistant cultivars is an environmentally friendly method of disease control. The aim of the present work was to assess tan spot resistance in common wheat cultivars recommended for cultivation in the Russian Federation, and to identify the dominant Tsn1 allele using a molecular marker. The assessment involved 39 winter and 31 spring wheat cultivars included in the State Register of Selection Achievement in 2018-2020. Evaluation of wheat resistance was carried out in laboratory conditions under artificial inoculation of seedlings and leaf segments. Two isolates of Pyrenophora tritici-repentis (Died.) Drechs, producing ToxA toxin (I_ToxA) and ToxB toxin (ToxB) were used. The dominant allele of the Tsn1 gene was identified using the Xfcp623 marker. A high level of resistance (R) to both isolates (I_ToxA and I_ToxB) was shown by spring cultivars ‘Grenada’ and ‘Silach’; moderate resistance (MR) was demonstrated by winter cultivars ‘Felicia’ and ‘Akhmat’ and spring cultivars ‘Omskaya 42’, ‘Zauralskaya Zhemchuzhina’, ‘Radmira’, ‘Tarskaya 12’ and ‘Extra’. A resistant reaction (R, MR) to the isolate I_ToxA was typical for 26% of winter cultivars and 45% of spring ones. The number of cultivars resistant to the I_ToxB isolate was significantly higher (59% and 52%, respectively). The total fraction of cultivars resistant to the isolate I_ToxA (reaction R, MR) in the collection of winter wheat was 26% and 45% in the spring wheat collection; while the fractions of cultivars resistant to the I_ToxB isolate in these collections were equal to 59% and 52%, respectively. By using the Xfcp623 marker, the diagnostic product was amplified in winter cultivars ‘Bodry’, ‘Kavalerka’, ‘Timiryazevka 150’, ‘Shef’, ‘Anastasia’, ‘Barynya’, ‘Donskaya Step’, ‘Elanskaya’ and spring cultivars ‘Odeta’, ‘Stolypinskaya 2’, ‘Iren’ 2’ and ‘OMGAU 100’. All these cultivars were moderately susceptible to the isolate I_ToxA, with the exception of ‘Odeta’ and ‘Iren’ 2’, which may indicate a decrease in the expression level of the ToxA gene in genotypes of these cultivars.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant breeding and biotechnology
Plant breeding and biotechnology Agricultural and Biological Sciences-Plant Science
CiteScore
2.30
自引率
0.00%
发文量
18
期刊最新文献
Assessment of Genetic Relationship among Rhynchostylis Species based on Inter-Simple Sequence Repeat (ISSR) Markers Host Plant Resistance to Foxglove Aphid (Aulacorthum solani) in Soybean Extraction of Lactate Dehydrogenase from Rice (Oryza sativa) and Corn (Zea Mays) for Alternative Lactic Acid Production Route Seedling Stage Image-Based Phenotyping Selection Criteria through Tolerance Indices on Drought and Salinity Stress in Rice Estimation of Gene Effect and Combining Ability for Yield and Yield Components Using Line x Tester Analysis in Rice (Oryza sativa)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1