用第一性原理计算研究Cmc21-Si2P2X的结构和物理性质

IF 0.9 4区 物理与天体物理 Q4 PHYSICS, CONDENSED MATTER Condensed Matter Physics Pub Date : 2021-12-18 DOI:10.5488/CMP.24.43602
R. Yang, X. Gao, F. Wu, Q. Wei, M. Xue
{"title":"用第一性原理计算研究Cmc21-Si2P2X的结构和物理性质","authors":"R. Yang, X. Gao, F. Wu, Q. Wei, M. Xue","doi":"10.5488/CMP.24.43602","DOIUrl":null,"url":null,"abstract":"The new structures, Cmc21-Si2P2X (X=S, Se, Te, and Po), are predicted, and their mechanical, electronic and optical properties are investigated with the density functional theory, by first principles calculations. The elastic constants of the four compounds are calculated by the stress-strain method. The calculations of the elastic stability criteria and phonon dispersion spectra imply that they are mechanically and dynamically stable at zero pressure. The mechanical parameters, such as shear moduli G, bulk moduli B, Young's moduli E and Poisson's ratios v are evaluated by the Voigt-Reuss-Hill approach. The Cmc21-Si2P2X has the largest hardness due to the largest Young's modulus in the four compounds, and it is a covalent crystal. The anisotropies of their mechanical properties are also analyzed. The band structures and densities of states, which are calculated by using HSE06, show that Cmc21-Si2P2X compounds are indirect bandgap semiconductors, and the values of the band gaps decrease with increasing atomic number from S, Se, Te, to Po. In addition, the longitudinal sound velocity and transverse sound velocity for Cmc21-Si2P2X have been investigated. The dielectric constant, electron energy loss, refractive index, reflectivity, absorption and conductivity are analyzed to gain the optical properties of Si2P2X.","PeriodicalId":10528,"journal":{"name":"Condensed Matter Physics","volume":"4 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigations on Cmc21-Si2P2X structures and physical properties by first-principles calculations\",\"authors\":\"R. Yang, X. Gao, F. Wu, Q. Wei, M. Xue\",\"doi\":\"10.5488/CMP.24.43602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The new structures, Cmc21-Si2P2X (X=S, Se, Te, and Po), are predicted, and their mechanical, electronic and optical properties are investigated with the density functional theory, by first principles calculations. The elastic constants of the four compounds are calculated by the stress-strain method. The calculations of the elastic stability criteria and phonon dispersion spectra imply that they are mechanically and dynamically stable at zero pressure. The mechanical parameters, such as shear moduli G, bulk moduli B, Young's moduli E and Poisson's ratios v are evaluated by the Voigt-Reuss-Hill approach. The Cmc21-Si2P2X has the largest hardness due to the largest Young's modulus in the four compounds, and it is a covalent crystal. The anisotropies of their mechanical properties are also analyzed. The band structures and densities of states, which are calculated by using HSE06, show that Cmc21-Si2P2X compounds are indirect bandgap semiconductors, and the values of the band gaps decrease with increasing atomic number from S, Se, Te, to Po. In addition, the longitudinal sound velocity and transverse sound velocity for Cmc21-Si2P2X have been investigated. The dielectric constant, electron energy loss, refractive index, reflectivity, absorption and conductivity are analyzed to gain the optical properties of Si2P2X.\",\"PeriodicalId\":10528,\"journal\":{\"name\":\"Condensed Matter Physics\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Condensed Matter Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.5488/CMP.24.43602\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.5488/CMP.24.43602","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

预测了新结构Cmc21-Si2P2X (X=S, Se, Te和Po),并通过第一性原理计算用密度泛函理论研究了它们的力学、电子和光学性质。采用应力-应变法计算了四种化合物的弹性常数。弹性稳定性判据和声子色散谱的计算表明它们在零压力下是机械和动态稳定的。采用Voigt-Reuss-Hill方法计算了剪切模量G、体模量B、杨氏模量E和泊松比v等力学参数。Cmc21-Si2P2X由于杨氏模量最大而具有最大的硬度,并且是共价晶体。分析了其力学性能的各向异性。用HSE06计算的能带结构和态密度表明,Cmc21-Si2P2X化合物是间接带隙半导体,从S、Se、Te到Po,带隙值随着原子序数的增加而减小。此外,还研究了Cmc21-Si2P2X的纵向声速和横向声速。分析了Si2P2X的介电常数、电子能量损失、折射率、反射率、吸收和电导率等参数,得到了Si2P2X的光学特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigations on Cmc21-Si2P2X structures and physical properties by first-principles calculations
The new structures, Cmc21-Si2P2X (X=S, Se, Te, and Po), are predicted, and their mechanical, electronic and optical properties are investigated with the density functional theory, by first principles calculations. The elastic constants of the four compounds are calculated by the stress-strain method. The calculations of the elastic stability criteria and phonon dispersion spectra imply that they are mechanically and dynamically stable at zero pressure. The mechanical parameters, such as shear moduli G, bulk moduli B, Young's moduli E and Poisson's ratios v are evaluated by the Voigt-Reuss-Hill approach. The Cmc21-Si2P2X has the largest hardness due to the largest Young's modulus in the four compounds, and it is a covalent crystal. The anisotropies of their mechanical properties are also analyzed. The band structures and densities of states, which are calculated by using HSE06, show that Cmc21-Si2P2X compounds are indirect bandgap semiconductors, and the values of the band gaps decrease with increasing atomic number from S, Se, Te, to Po. In addition, the longitudinal sound velocity and transverse sound velocity for Cmc21-Si2P2X have been investigated. The dielectric constant, electron energy loss, refractive index, reflectivity, absorption and conductivity are analyzed to gain the optical properties of Si2P2X.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Condensed Matter Physics
Condensed Matter Physics 物理-物理:凝聚态物理
CiteScore
1.10
自引率
16.70%
发文量
17
审稿时长
1 months
期刊介绍: Condensed Matter Physics contains original and review articles in the field of statistical mechanics and thermodynamics of equilibrium and nonequilibrium processes, relativistic mechanics of interacting particle systems.The main attention is paid to physics of solid, liquid and amorphous systems, phase equilibria and phase transitions, thermal, structural, electric, magnetic and optical properties of condensed matter. Condensed Matter Physics is published quarterly.
期刊最新文献
How should a small country respond to climate change? Aspects of the microscopic structure of curcumin solutions with water-dimethylsulfoxide solvent. Molecular dynamics computer simulation study On the existence of a second branch of transverse collective excitations in liquid metals Proportional correlation between heat capacity and thermal expansion of atomic, molecular crystals and carbon nanostructures An ab initio study of the static, dynamic and electronic properties of some liquid 5d transition metals near melting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1