腺相关病毒血清型9 (AAV9)制剂的批间变异

Q1 Immunology and Microbiology Human Gene Therapy Methods Pub Date : 2019-12-01 DOI:10.1089/hgtb.2019.105
Deirdre M O'Connor, Corinne Lutomski, Martin F Jarrold, Nicholas M Boulis, Anthony Donsante
{"title":"腺相关病毒血清型9 (AAV9)制剂的批间变异","authors":"Deirdre M O'Connor,&nbsp;Corinne Lutomski,&nbsp;Martin F Jarrold,&nbsp;Nicholas M Boulis,&nbsp;Anthony Donsante","doi":"10.1089/hgtb.2019.105","DOIUrl":null,"url":null,"abstract":"<p><p>Viral vectors are complex drugs that pose a particular challenge for manufacturing. Previous studies have shown that, unlike small-molecule drugs, vector preparations do not yield a collection of identical particles. Instead, a mixture of particles that vary in capsid stoichiometry and impurities is created, which may differ from lot to lot. The consequences of this are unclear, but conflicting reports regarding the biological properties of vectors, including transduction patterns, suggest that this variability may have an effect. However, other variables, including differences in animal strains and techniques, make it difficult to identify a cause. Here, we report lot-to-lot variation in spinal cord gray matter transduction following intrathecal delivery of self-complementary adeno-associated virus serotype 9 vectors. Eleven lots of vector were evaluated from six vector cores, including one preclinical/Good Laboratory Practice lot. Eight of the lots, including the preclinical lot, failed to transduce the gray matter, whereas the other three provided robust transduction. The cause for this variation is unknown, but it did not correlate with vector titer, buffer, or purification method. These results highlight the need to identify the cause of this variation and to develop improved production and quality control methods to ensure lot-to-lot consistency of vector potency.</p>","PeriodicalId":13126,"journal":{"name":"Human Gene Therapy Methods","volume":"30 6","pages":"214-225"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/hgtb.2019.105","citationCount":"15","resultStr":"{\"title\":\"Lot-to-Lot Variation in Adeno-Associated Virus Serotype 9 (AAV9) Preparations.\",\"authors\":\"Deirdre M O'Connor,&nbsp;Corinne Lutomski,&nbsp;Martin F Jarrold,&nbsp;Nicholas M Boulis,&nbsp;Anthony Donsante\",\"doi\":\"10.1089/hgtb.2019.105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Viral vectors are complex drugs that pose a particular challenge for manufacturing. Previous studies have shown that, unlike small-molecule drugs, vector preparations do not yield a collection of identical particles. Instead, a mixture of particles that vary in capsid stoichiometry and impurities is created, which may differ from lot to lot. The consequences of this are unclear, but conflicting reports regarding the biological properties of vectors, including transduction patterns, suggest that this variability may have an effect. However, other variables, including differences in animal strains and techniques, make it difficult to identify a cause. Here, we report lot-to-lot variation in spinal cord gray matter transduction following intrathecal delivery of self-complementary adeno-associated virus serotype 9 vectors. Eleven lots of vector were evaluated from six vector cores, including one preclinical/Good Laboratory Practice lot. Eight of the lots, including the preclinical lot, failed to transduce the gray matter, whereas the other three provided robust transduction. The cause for this variation is unknown, but it did not correlate with vector titer, buffer, or purification method. These results highlight the need to identify the cause of this variation and to develop improved production and quality control methods to ensure lot-to-lot consistency of vector potency.</p>\",\"PeriodicalId\":13126,\"journal\":{\"name\":\"Human Gene Therapy Methods\",\"volume\":\"30 6\",\"pages\":\"214-225\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1089/hgtb.2019.105\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Gene Therapy Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1089/hgtb.2019.105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Immunology and Microbiology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Gene Therapy Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/hgtb.2019.105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 15

摘要

病毒载体是一种复杂的药物,对生产构成了特殊的挑战。先前的研究表明,与小分子药物不同,载体制剂不能产生相同颗粒的集合。相反,会产生不同衣壳化学计量和杂质的颗粒混合物,这可能会因批次而异。这样做的后果尚不清楚,但有关载体生物学特性(包括转导模式)的相互矛盾的报告表明,这种可变性可能会产生影响。然而,其他变量,包括动物品系和技术的差异,使其难以确定原因。在这里,我们报告了在鞘内递送自互补腺相关病毒血清型9载体后脊髓灰质转导的批量变化。从6个病媒核心中评估了11个批次的病媒,包括一个临床前/良好实验室规范批次。其中8个批次,包括临床前批次,未能转导灰质,而其他3个批次提供了强有力的转导。这种变异的原因尚不清楚,但与载体滴度、缓冲液或纯化方法无关。这些结果突出表明,需要确定这种差异的原因,并制定改进的生产和质量控制方法,以确保每批病媒效力的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lot-to-Lot Variation in Adeno-Associated Virus Serotype 9 (AAV9) Preparations.

Viral vectors are complex drugs that pose a particular challenge for manufacturing. Previous studies have shown that, unlike small-molecule drugs, vector preparations do not yield a collection of identical particles. Instead, a mixture of particles that vary in capsid stoichiometry and impurities is created, which may differ from lot to lot. The consequences of this are unclear, but conflicting reports regarding the biological properties of vectors, including transduction patterns, suggest that this variability may have an effect. However, other variables, including differences in animal strains and techniques, make it difficult to identify a cause. Here, we report lot-to-lot variation in spinal cord gray matter transduction following intrathecal delivery of self-complementary adeno-associated virus serotype 9 vectors. Eleven lots of vector were evaluated from six vector cores, including one preclinical/Good Laboratory Practice lot. Eight of the lots, including the preclinical lot, failed to transduce the gray matter, whereas the other three provided robust transduction. The cause for this variation is unknown, but it did not correlate with vector titer, buffer, or purification method. These results highlight the need to identify the cause of this variation and to develop improved production and quality control methods to ensure lot-to-lot consistency of vector potency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Human Gene Therapy Methods
Human Gene Therapy Methods BIOTECHNOLOGY & APPLIED MICROBIOLOGY-GENETICS & HEREDITY
CiteScore
5.80
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Human Gene Therapy is the premier, multidisciplinary journal covering all aspects of gene therapy. The Journal publishes in-depth coverage of DNA, RNA, and cell therapies by delivering the latest breakthroughs in research and technologies. Human Gene Therapy provides a central forum for scientific and clinical information, including ethical, legal, regulatory, social, and commercial issues, which enables the advancement and progress of therapeutic procedures leading to improved patient outcomes, and ultimately, to curing diseases. The Journal is divided into three parts. Human Gene Therapy, the flagship, is published 12 times per year. HGT Methods, a bimonthly journal, focuses on the applications of gene therapy to product testing and development. HGT Clinical Development, a quarterly journal, serves as a venue for publishing data relevant to the regulatory review and commercial development of cell and gene therapy products.
期刊最新文献
Lot-to-Lot Variation in Adeno-Associated Virus Serotype 9 (AAV9) Preparations. Fast-Seq: A Simple Method for Rapid and Inexpensive Validation of Packaged Single-Stranded Adeno-Associated Viral Genomes in Academic Settings. LINC00958 Accelerates Cell Proliferation and Migration in Non-Small Cell Lung Cancer Through JNK/c-JUN Signaling. Nanoparticle Tracking of Adenovirus by Light Scattering and Fluorescence Detection. LINC00958 accelerates cell proliferation and migration in non-small cell lung cancer through JNK/c-JUN signaling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1