利用粒子滤波和DCT特征跟踪目标

Cong Lin, Chi-Man Pun
{"title":"利用粒子滤波和DCT特征跟踪目标","authors":"Cong Lin, Chi-Man Pun","doi":"10.2991/CSE.2013.39","DOIUrl":null,"url":null,"abstract":"In this paper, we proposed an object tracking method for video stream based on conventional particle filter. Feature vectors are extracted from coefficient matrices of Discrete Cosine Transform (DCT). The feature, as experiment showed, is very robust to occlusion and rotation and it is not sensitive to scale changes. The proposed method is efficient enough to be used in a real-time application. The experiment is carried out on some common used datasets in literature. The result is satisfied and showed the estimated trace follows the target object very closely.","PeriodicalId":6838,"journal":{"name":"2021 IEEE 24th International Conference on Computational Science and Engineering (CSE)","volume":"1 1","pages":"169-171"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Tracking Object Using Particle Filter and DCT Features\",\"authors\":\"Cong Lin, Chi-Man Pun\",\"doi\":\"10.2991/CSE.2013.39\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we proposed an object tracking method for video stream based on conventional particle filter. Feature vectors are extracted from coefficient matrices of Discrete Cosine Transform (DCT). The feature, as experiment showed, is very robust to occlusion and rotation and it is not sensitive to scale changes. The proposed method is efficient enough to be used in a real-time application. The experiment is carried out on some common used datasets in literature. The result is satisfied and showed the estimated trace follows the target object very closely.\",\"PeriodicalId\":6838,\"journal\":{\"name\":\"2021 IEEE 24th International Conference on Computational Science and Engineering (CSE)\",\"volume\":\"1 1\",\"pages\":\"169-171\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 24th International Conference on Computational Science and Engineering (CSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2991/CSE.2013.39\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 24th International Conference on Computational Science and Engineering (CSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/CSE.2013.39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于传统粒子滤波的视频流目标跟踪方法。从离散余弦变换(DCT)的系数矩阵中提取特征向量。实验表明,该特征对遮挡和旋转具有较强的鲁棒性,对尺度变化不敏感。所提出的方法是有效的,可以用于实时应用。在一些文献中常用的数据集上进行了实验。结果令人满意,表明估计的轨迹与目标物体非常接近。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tracking Object Using Particle Filter and DCT Features
In this paper, we proposed an object tracking method for video stream based on conventional particle filter. Feature vectors are extracted from coefficient matrices of Discrete Cosine Transform (DCT). The feature, as experiment showed, is very robust to occlusion and rotation and it is not sensitive to scale changes. The proposed method is efficient enough to be used in a real-time application. The experiment is carried out on some common used datasets in literature. The result is satisfied and showed the estimated trace follows the target object very closely.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
25th IEEE International Conference on Computational Science and Engineering, CSE 2022, Wuhan, China, December 9-11, 2022 UAV-empowered Vehicular Networking Scheme for Federated Learning in Delay Tolerant Environments A novel sentiment classification based on “word-phrase” attention mechanism CFP- A New Approach to Predicting Fantasy Points of NFL Quarterbacks A K-nearest neighbor classifier based on homomorphic encryption scheme
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1