苯丙氨酸解氨酶的激活是盐胁迫玉米叶片抗氧化系统的关键组成部分

A. Gholizadeh, B. Kohnehrouz
{"title":"苯丙氨酸解氨酶的激活是盐胁迫玉米叶片抗氧化系统的关键组成部分","authors":"A. Gholizadeh, B. Kohnehrouz","doi":"10.1590/S1677-04202010000400001","DOIUrl":null,"url":null,"abstract":"Differential antioxidative activities were assessed in the leaves of two maize inbreds (A-180 and A-619) under salt stress and the subsequent recovery period. Total antioxidation test revealed that in both inbreds, this ability was sharply increased during stress period, but was slowly reverted back to the normal level during recovery. The enzymatic antioxidative analysis showed differential patterns in the activities of catalase, peroxidase and polyphenol oxidase in both maize inbreeds. Comparative analysis of the activity of phenylalanine ammonia lyase (PAL), a key enzyme at the gateway of propanoid biosynthetic pathway, suggested that propanoid compounds might be antioxidants of pivotal importance to the salt-challenged maize antioxidation system. As for drought-stressed plants, a PAL-dependent antioxidative strategy is proposed as a promising target for maize salt resistance engineering.","PeriodicalId":9278,"journal":{"name":"Brazilian Journal of Plant Physiology","volume":"5 1","pages":"217-223"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":"{\"title\":\"Activation of phenylalanine ammonia lyase as a key component of the antioxidative system of salt-challenged maize leaves\",\"authors\":\"A. Gholizadeh, B. Kohnehrouz\",\"doi\":\"10.1590/S1677-04202010000400001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Differential antioxidative activities were assessed in the leaves of two maize inbreds (A-180 and A-619) under salt stress and the subsequent recovery period. Total antioxidation test revealed that in both inbreds, this ability was sharply increased during stress period, but was slowly reverted back to the normal level during recovery. The enzymatic antioxidative analysis showed differential patterns in the activities of catalase, peroxidase and polyphenol oxidase in both maize inbreeds. Comparative analysis of the activity of phenylalanine ammonia lyase (PAL), a key enzyme at the gateway of propanoid biosynthetic pathway, suggested that propanoid compounds might be antioxidants of pivotal importance to the salt-challenged maize antioxidation system. As for drought-stressed plants, a PAL-dependent antioxidative strategy is proposed as a promising target for maize salt resistance engineering.\",\"PeriodicalId\":9278,\"journal\":{\"name\":\"Brazilian Journal of Plant Physiology\",\"volume\":\"5 1\",\"pages\":\"217-223\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"42\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brazilian Journal of Plant Physiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/S1677-04202010000400001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Plant Physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/S1677-04202010000400001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

摘要

研究了两个玉米自交系A-180和A-619叶片在盐胁迫和盐胁迫后恢复期的抗氧化活性差异。总抗氧化试验结果表明,两种自交系的抗氧化能力在应激期急剧增加,但在恢复期缓慢恢复到正常水平。酶促抗氧化分析表明,两个玉米近交系过氧化氢酶、过氧化物酶和多酚氧化酶活性存在差异。对丙氨酸生物合成途径关键酶苯丙氨酸解氨酶(PAL)活性的比较分析表明,丙氨酸类化合物可能是盐胁迫玉米抗氧化系统中至关重要的抗氧化剂。对于干旱胁迫植物,pal依赖的抗氧化策略被认为是玉米抗盐工程的一个有希望的目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Activation of phenylalanine ammonia lyase as a key component of the antioxidative system of salt-challenged maize leaves
Differential antioxidative activities were assessed in the leaves of two maize inbreds (A-180 and A-619) under salt stress and the subsequent recovery period. Total antioxidation test revealed that in both inbreds, this ability was sharply increased during stress period, but was slowly reverted back to the normal level during recovery. The enzymatic antioxidative analysis showed differential patterns in the activities of catalase, peroxidase and polyphenol oxidase in both maize inbreeds. Comparative analysis of the activity of phenylalanine ammonia lyase (PAL), a key enzyme at the gateway of propanoid biosynthetic pathway, suggested that propanoid compounds might be antioxidants of pivotal importance to the salt-challenged maize antioxidation system. As for drought-stressed plants, a PAL-dependent antioxidative strategy is proposed as a promising target for maize salt resistance engineering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Molecular characterization of the polyphenol oxidase gene in lulo (Solanum quitoense Lam.) var. Castilla An overview of the Brazilian Journal of Plant Physiology: we need a push! Cd-tolerance markers of Pfaffia glomerata (Spreng.) Pedersen plants: anatomical and physiological features The chlorophyll a fluorescence as an indicator of the temperature stress in the leaves of Prunus persica Increasing plant longevity and associated metabolic events in potted carnation (Dianthus caryophyllus L. Clove Pink)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1