ANFIS用于预测印度COVID-19的流行高峰和感染病例。

IF 4.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neural Computing & Applications Pub Date : 2023-01-01 Epub Date: 2021-09-21 DOI:10.1007/s00521-021-06412-w
Rajagopal Kumar, Fadi Al-Turjman, L N B Srinivas, M Braveen, Jothilakshmi Ramakrishnan
{"title":"ANFIS用于预测印度COVID-19的流行高峰和感染病例。","authors":"Rajagopal Kumar, Fadi Al-Turjman, L N B Srinivas, M Braveen, Jothilakshmi Ramakrishnan","doi":"10.1007/s00521-021-06412-w","DOIUrl":null,"url":null,"abstract":"<p><p>Corona Virus Disease 2019 (COVID-19) is a continuing extensive incident globally affecting several million people's health and sometimes leading to death. The outbreak prediction and making cautious steps is the only way to prevent the spread of COVID-19. This paper presents an Adaptive Neuro-fuzzy Inference System (ANFIS)-based machine learning technique to predict the possible outbreak in India. The proposed ANFIS-based prediction system tracks the growth of epidemic based on the previous data sets fetched from cloud computing. The proposed ANFIS technique predicts the epidemic peak and COVID-19 infected cases through the cloud data sets. The ANFIS is chosen for this study as it has both numerical and linguistic knowledge, and also has ability to classify data and identify patterns. The proposed technique not only predicts the outbreak but also tracks the disease and suggests a measurable policy to manage the COVID-19 epidemic. The obtained prediction shows that the proposed technique very effectively tracks the growth of the COVID-19 epidemic. The result shows the growth of infection rate decreases at end of 2020 and also has delay epidemic peak by 40-60 days. The prediction result using the proposed ANFIS technique shows a low Mean Square Error (MSE) of 1.184 × 10<sup>-3</sup> with an accuracy of 86%. The study provides important information for public health providers and the government to control the COVID-19 epidemic.</p>","PeriodicalId":49766,"journal":{"name":"Neural Computing & Applications","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8452449/pdf/","citationCount":"0","resultStr":"{\"title\":\"ANFIS for prediction of epidemic peak and infected cases for COVID-19 in India.\",\"authors\":\"Rajagopal Kumar, Fadi Al-Turjman, L N B Srinivas, M Braveen, Jothilakshmi Ramakrishnan\",\"doi\":\"10.1007/s00521-021-06412-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Corona Virus Disease 2019 (COVID-19) is a continuing extensive incident globally affecting several million people's health and sometimes leading to death. The outbreak prediction and making cautious steps is the only way to prevent the spread of COVID-19. This paper presents an Adaptive Neuro-fuzzy Inference System (ANFIS)-based machine learning technique to predict the possible outbreak in India. The proposed ANFIS-based prediction system tracks the growth of epidemic based on the previous data sets fetched from cloud computing. The proposed ANFIS technique predicts the epidemic peak and COVID-19 infected cases through the cloud data sets. The ANFIS is chosen for this study as it has both numerical and linguistic knowledge, and also has ability to classify data and identify patterns. The proposed technique not only predicts the outbreak but also tracks the disease and suggests a measurable policy to manage the COVID-19 epidemic. The obtained prediction shows that the proposed technique very effectively tracks the growth of the COVID-19 epidemic. The result shows the growth of infection rate decreases at end of 2020 and also has delay epidemic peak by 40-60 days. The prediction result using the proposed ANFIS technique shows a low Mean Square Error (MSE) of 1.184 × 10<sup>-3</sup> with an accuracy of 86%. The study provides important information for public health providers and the government to control the COVID-19 epidemic.</p>\",\"PeriodicalId\":49766,\"journal\":{\"name\":\"Neural Computing & Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8452449/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Computing & Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00521-021-06412-w\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/9/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Computing & Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00521-021-06412-w","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/9/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

2019冠状病毒病(COVID-19)是全球持续发生的广泛事件,影响数百万人的健康,有时会导致死亡。预测疫情并采取谨慎措施是防止新冠病毒传播的唯一途径。本文提出了一种基于自适应神经模糊推理系统(ANFIS)的机器学习技术来预测印度可能爆发的疫情。提出了基于anfiss的预测系统,该系统基于从云计算中获取的先前数据集跟踪流行病的增长。提出的ANFIS技术通过云数据集预测疫情峰值和COVID-19感染病例。之所以选择ANFIS进行这项研究,是因为它既有数字知识,也有语言知识,而且还具有对数据进行分类和识别模式的能力。提出的技术不仅可以预测疫情,还可以跟踪疾病,并提出可衡量的政策来管理COVID-19流行病。预测结果表明,所提出的方法可以非常有效地跟踪COVID-19疫情的发展。结果表明,2020年底感染率增速下降,并将疫情高峰推迟40 ~ 60天。采用ANFIS技术的预测结果显示,均方误差(MSE)为1.184 × 10-3,精度为86%。该研究为公共卫生机构和政府控制新冠肺炎疫情提供了重要信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ANFIS for prediction of epidemic peak and infected cases for COVID-19 in India.

Corona Virus Disease 2019 (COVID-19) is a continuing extensive incident globally affecting several million people's health and sometimes leading to death. The outbreak prediction and making cautious steps is the only way to prevent the spread of COVID-19. This paper presents an Adaptive Neuro-fuzzy Inference System (ANFIS)-based machine learning technique to predict the possible outbreak in India. The proposed ANFIS-based prediction system tracks the growth of epidemic based on the previous data sets fetched from cloud computing. The proposed ANFIS technique predicts the epidemic peak and COVID-19 infected cases through the cloud data sets. The ANFIS is chosen for this study as it has both numerical and linguistic knowledge, and also has ability to classify data and identify patterns. The proposed technique not only predicts the outbreak but also tracks the disease and suggests a measurable policy to manage the COVID-19 epidemic. The obtained prediction shows that the proposed technique very effectively tracks the growth of the COVID-19 epidemic. The result shows the growth of infection rate decreases at end of 2020 and also has delay epidemic peak by 40-60 days. The prediction result using the proposed ANFIS technique shows a low Mean Square Error (MSE) of 1.184 × 10-3 with an accuracy of 86%. The study provides important information for public health providers and the government to control the COVID-19 epidemic.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neural Computing & Applications
Neural Computing & Applications 工程技术-计算机:人工智能
CiteScore
11.40
自引率
8.30%
发文量
1280
审稿时长
6.9 months
期刊介绍: Neural Computing & Applications is an international journal which publishes original research and other information in the field of practical applications of neural computing and related techniques such as genetic algorithms, fuzzy logic and neuro-fuzzy systems. All items relevant to building practical systems are within its scope, including but not limited to: -adaptive computing- algorithms- applicable neural networks theory- applied statistics- architectures- artificial intelligence- benchmarks- case histories of innovative applications- fuzzy logic- genetic algorithms- hardware implementations- hybrid intelligent systems- intelligent agents- intelligent control systems- intelligent diagnostics- intelligent forecasting- machine learning- neural networks- neuro-fuzzy systems- pattern recognition- performance measures- self-learning systems- software simulations- supervised and unsupervised learning methods- system engineering and integration. Featured contributions fall into several categories: Original Articles, Review Articles, Book Reviews and Announcements.
期刊最新文献
Stress monitoring using wearable sensors: IoT techniques in medical field. A new hybrid model of convolutional neural networks and hidden Markov chains for image classification. Analysing sentiment change detection of Covid-19 tweets. Normal vibration distribution search-based differential evolution algorithm for multimodal biomedical image registration. Special issue on deep learning and big data analytics for medical e-diagnosis/AI-based e-diagnosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1