{"title":"二硫化钨修饰电极差脉冲阳极溶出伏安法测定盐酸克仑特罗","authors":"Nho Dung Nguyen, Mai Nguyen Do","doi":"10.26459/hueunijns.v131i1d.6716","DOIUrl":null,"url":null,"abstract":"In the present work, tungsten disulfide was synthesised and characterised by using X-ray diffraction and scanning electron microscopy. This material was employed to modify a glassy-carbon electrode to analyse clenbuterol. The results show that tungsten disulfide displays electrocatalytic activity toward clenbuterol oxidation. The proposed technique is prospective for clenbuterol examination. The limit of detection and the linear range are 0.51 mM and 1–210 mM.","PeriodicalId":13004,"journal":{"name":"Hue University Journal of Science: Natural Science","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of clenbuterol with differential pulse anodic stripping voltammetry technique at tungsten disulfide-modified electrode\",\"authors\":\"Nho Dung Nguyen, Mai Nguyen Do\",\"doi\":\"10.26459/hueunijns.v131i1d.6716\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present work, tungsten disulfide was synthesised and characterised by using X-ray diffraction and scanning electron microscopy. This material was employed to modify a glassy-carbon electrode to analyse clenbuterol. The results show that tungsten disulfide displays electrocatalytic activity toward clenbuterol oxidation. The proposed technique is prospective for clenbuterol examination. The limit of detection and the linear range are 0.51 mM and 1–210 mM.\",\"PeriodicalId\":13004,\"journal\":{\"name\":\"Hue University Journal of Science: Natural Science\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hue University Journal of Science: Natural Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26459/hueunijns.v131i1d.6716\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hue University Journal of Science: Natural Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26459/hueunijns.v131i1d.6716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Determination of clenbuterol with differential pulse anodic stripping voltammetry technique at tungsten disulfide-modified electrode
In the present work, tungsten disulfide was synthesised and characterised by using X-ray diffraction and scanning electron microscopy. This material was employed to modify a glassy-carbon electrode to analyse clenbuterol. The results show that tungsten disulfide displays electrocatalytic activity toward clenbuterol oxidation. The proposed technique is prospective for clenbuterol examination. The limit of detection and the linear range are 0.51 mM and 1–210 mM.