α-HMM和序列数据的最优解码高阶结构

Fereshteh R. Dastjerdi , David A. Robinson , Liming Cai
{"title":"α-HMM和序列数据的最优解码高阶结构","authors":"Fereshteh R. Dastjerdi ,&nbsp;David A. Robinson ,&nbsp;Liming Cai","doi":"10.1016/j.jcmds.2022.100065","DOIUrl":null,"url":null,"abstract":"<div><p>Decoding higher-order structure on sequential data is an indispensable task in data science. It requires models to have the capability to characterize interdependencies among hidden events that have generated observable data. However, to be able to decode arbitrary structures, such models would need to cope with the intractability arising from computing context-sensitive relations, likely compromising the quality of answers. To address this important issue, the current paper introduces the <em>arbitrary order hidden Markov model</em> (<span><math><mi>α</mi></math></span>-HMM), an extension of the HMM that permits decoding of the optimal higher-order structure with an assurance of computational tractability. The advantage of the <span><math><mi>α</mi></math></span>-HMM<!--> <!-->is made possible by an identified principle on how random variables influence each other in a stochastic process. In particular, it is shown that decoding the optimal structure with an <span><math><mi>α</mi></math></span>-HMM<!--> <!-->can be computed in <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>-time for any stochastic process of <span><math><mi>n</mi></math></span> random variables. As an application, it is demonstrated the decoding algorithm inspires a simple yet effective algorithm for RNA secondary structure prediction.</p></div>","PeriodicalId":100768,"journal":{"name":"Journal of Computational Mathematics and Data Science","volume":"5 ","pages":"Article 100065"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772415822000256/pdfft?md5=dbdeefc075425bee6733e90b348391d6&pid=1-s2.0-S2772415822000256-main.pdf","citationCount":"0","resultStr":"{\"title\":\"α-HMM and optimal decoding higher-order structures on sequential data\",\"authors\":\"Fereshteh R. Dastjerdi ,&nbsp;David A. Robinson ,&nbsp;Liming Cai\",\"doi\":\"10.1016/j.jcmds.2022.100065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Decoding higher-order structure on sequential data is an indispensable task in data science. It requires models to have the capability to characterize interdependencies among hidden events that have generated observable data. However, to be able to decode arbitrary structures, such models would need to cope with the intractability arising from computing context-sensitive relations, likely compromising the quality of answers. To address this important issue, the current paper introduces the <em>arbitrary order hidden Markov model</em> (<span><math><mi>α</mi></math></span>-HMM), an extension of the HMM that permits decoding of the optimal higher-order structure with an assurance of computational tractability. The advantage of the <span><math><mi>α</mi></math></span>-HMM<!--> <!-->is made possible by an identified principle on how random variables influence each other in a stochastic process. In particular, it is shown that decoding the optimal structure with an <span><math><mi>α</mi></math></span>-HMM<!--> <!-->can be computed in <span><math><mrow><mi>O</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>-time for any stochastic process of <span><math><mi>n</mi></math></span> random variables. As an application, it is demonstrated the decoding algorithm inspires a simple yet effective algorithm for RNA secondary structure prediction.</p></div>\",\"PeriodicalId\":100768,\"journal\":{\"name\":\"Journal of Computational Mathematics and Data Science\",\"volume\":\"5 \",\"pages\":\"Article 100065\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772415822000256/pdfft?md5=dbdeefc075425bee6733e90b348391d6&pid=1-s2.0-S2772415822000256-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Mathematics and Data Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772415822000256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Mathematics and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772415822000256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

序列数据的高阶结构解码是数据科学中不可缺少的一项任务。它要求模型有能力描述产生可观察数据的隐藏事件之间的相互依赖性。然而,为了能够解码任意结构,这样的模型需要处理计算上下文敏感关系所产生的棘手问题,这可能会影响答案的质量。为了解决这一重要问题,本文引入了任意阶隐马尔可夫模型(α-HMM),这是隐马尔可夫模型的扩展,它允许在保证计算可追溯性的情况下解码最优的高阶结构。α-HMM的优势是通过确定随机过程中随机变量如何相互影响的原理而实现的。特别是,对于任意n个随机变量的随机过程,用α-HMM解码最优结构可以在O(n3)时间内计算出来。作为一个应用,证明了解码算法启发了一种简单而有效的RNA二级结构预测算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
α-HMM and optimal decoding higher-order structures on sequential data

Decoding higher-order structure on sequential data is an indispensable task in data science. It requires models to have the capability to characterize interdependencies among hidden events that have generated observable data. However, to be able to decode arbitrary structures, such models would need to cope with the intractability arising from computing context-sensitive relations, likely compromising the quality of answers. To address this important issue, the current paper introduces the arbitrary order hidden Markov model (α-HMM), an extension of the HMM that permits decoding of the optimal higher-order structure with an assurance of computational tractability. The advantage of the α-HMM is made possible by an identified principle on how random variables influence each other in a stochastic process. In particular, it is shown that decoding the optimal structure with an α-HMM can be computed in O(n3)-time for any stochastic process of n random variables. As an application, it is demonstrated the decoding algorithm inspires a simple yet effective algorithm for RNA secondary structure prediction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
0
期刊最新文献
Efficiency of the multisection method Bayesian optimization of one-dimensional convolutional neural networks (1D CNN) for early diagnosis of Autistic Spectrum Disorder Novel color space representation extracted by NMF to segment a color image Enhanced MRI brain tumor detection and classification via topological data analysis and low-rank tensor decomposition Artifact removal from ECG signals using online recursive independent component analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1