{"title":"γ′相颗粒对(CoCrFeNi)94Ti2Al4高熵合金单晶力学行为及变形机制的影响","authors":"A. Saraeva","doi":"10.18323/2073-5073-2021-3-84-90","DOIUrl":null,"url":null,"abstract":"Recently, the interest of researchers has focused on a new FCC class (FCC – face-centered cubic lattice) high-entropy alloys (HEA), due to their unique properties – high values of the strain hardening coefficient, good plasticity, and ductile fracture at low test temperatures. Such a combination of properties in an FCC of HEA is achieved by mixing five or more elements in equal atomic proportions. Due to the strong temperature dependence of stresses at the σ0.1(T) yield point, these alloys have low σ0.1 values at temperatures above room temperature, which hinders their practical application. A precipitation hardening is an effective way to achieve high strength and is successfully used for hardening HEA FCC. The paper studied the influence of ageing at 923 K for 4 hours and at 1073 K for 18 and 30 hours on the mechanical behavior of single crystals of (CoCrFeNi)94Ti2Al4 (at.%) HEA FCC oriented along the [001] direction under tension. Ageing at 923 K for 4 hours and at 1073 K for 18 and 30 hours leads to the precipitation of γ′-phase particles, the size and volume fraction of which depend on the ageing temperature and time. The γ′-phase particles precipitation leads to an increase in stresses at the yield point from 47 MPa (ageing at 923 K, 4 hours) to 226 MPa (ageing at 1073 K, 30 hours) relative to quenched crystals at 296 K. The study identified the dependence of the strain hardening coefficient, plasticity, and the maximum stress level before fracture on heat treatment. The author discussed the reasons for the growth of stresses at the yield point and the strain hardening coefficient upon precipitation of γ′-phase particles.","PeriodicalId":23555,"journal":{"name":"Vektor nauki Tol'yattinskogo gosudarstvennogo universiteta","volume":"27 8","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EFFECT OF γ′-PHASE PARTICLES ON THE MECHANICAL BEHAVIOR AND DEFORMATION MECHANISM OF (CoCrFeNi)94Ti2Al4 HIGH ENTROPY ALLOY SINGLE CRYSTALS\",\"authors\":\"A. Saraeva\",\"doi\":\"10.18323/2073-5073-2021-3-84-90\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, the interest of researchers has focused on a new FCC class (FCC – face-centered cubic lattice) high-entropy alloys (HEA), due to their unique properties – high values of the strain hardening coefficient, good plasticity, and ductile fracture at low test temperatures. Such a combination of properties in an FCC of HEA is achieved by mixing five or more elements in equal atomic proportions. Due to the strong temperature dependence of stresses at the σ0.1(T) yield point, these alloys have low σ0.1 values at temperatures above room temperature, which hinders their practical application. A precipitation hardening is an effective way to achieve high strength and is successfully used for hardening HEA FCC. The paper studied the influence of ageing at 923 K for 4 hours and at 1073 K for 18 and 30 hours on the mechanical behavior of single crystals of (CoCrFeNi)94Ti2Al4 (at.%) HEA FCC oriented along the [001] direction under tension. Ageing at 923 K for 4 hours and at 1073 K for 18 and 30 hours leads to the precipitation of γ′-phase particles, the size and volume fraction of which depend on the ageing temperature and time. The γ′-phase particles precipitation leads to an increase in stresses at the yield point from 47 MPa (ageing at 923 K, 4 hours) to 226 MPa (ageing at 1073 K, 30 hours) relative to quenched crystals at 296 K. The study identified the dependence of the strain hardening coefficient, plasticity, and the maximum stress level before fracture on heat treatment. The author discussed the reasons for the growth of stresses at the yield point and the strain hardening coefficient upon precipitation of γ′-phase particles.\",\"PeriodicalId\":23555,\"journal\":{\"name\":\"Vektor nauki Tol'yattinskogo gosudarstvennogo universiteta\",\"volume\":\"27 8\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vektor nauki Tol'yattinskogo gosudarstvennogo universiteta\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18323/2073-5073-2021-3-84-90\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vektor nauki Tol'yattinskogo gosudarstvennogo universiteta","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18323/2073-5073-2021-3-84-90","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
EFFECT OF γ′-PHASE PARTICLES ON THE MECHANICAL BEHAVIOR AND DEFORMATION MECHANISM OF (CoCrFeNi)94Ti2Al4 HIGH ENTROPY ALLOY SINGLE CRYSTALS
Recently, the interest of researchers has focused on a new FCC class (FCC – face-centered cubic lattice) high-entropy alloys (HEA), due to their unique properties – high values of the strain hardening coefficient, good plasticity, and ductile fracture at low test temperatures. Such a combination of properties in an FCC of HEA is achieved by mixing five or more elements in equal atomic proportions. Due to the strong temperature dependence of stresses at the σ0.1(T) yield point, these alloys have low σ0.1 values at temperatures above room temperature, which hinders their practical application. A precipitation hardening is an effective way to achieve high strength and is successfully used for hardening HEA FCC. The paper studied the influence of ageing at 923 K for 4 hours and at 1073 K for 18 and 30 hours on the mechanical behavior of single crystals of (CoCrFeNi)94Ti2Al4 (at.%) HEA FCC oriented along the [001] direction under tension. Ageing at 923 K for 4 hours and at 1073 K for 18 and 30 hours leads to the precipitation of γ′-phase particles, the size and volume fraction of which depend on the ageing temperature and time. The γ′-phase particles precipitation leads to an increase in stresses at the yield point from 47 MPa (ageing at 923 K, 4 hours) to 226 MPa (ageing at 1073 K, 30 hours) relative to quenched crystals at 296 K. The study identified the dependence of the strain hardening coefficient, plasticity, and the maximum stress level before fracture on heat treatment. The author discussed the reasons for the growth of stresses at the yield point and the strain hardening coefficient upon precipitation of γ′-phase particles.