Zhimei Lei, Shanshan Cai, Lili Cui, Lin Wu, Yiwei Liu
{"title":"不同的工业4.0技术如何支持某些循环经济实践?","authors":"Zhimei Lei, Shanshan Cai, Lili Cui, Lin Wu, Yiwei Liu","doi":"10.1108/imds-05-2022-0270","DOIUrl":null,"url":null,"abstract":"PurposeUncovering the relationship between Industry 4.0 (I4.0) technologies and circular economy (CE) practices is critical not only for implementing CE but also for leveraging I4.0 to achieve sustainable development goals. However, the potential connection between them – especially how different I4.0 technologies may influence various CE practices – remains inadequately researched. The purpose of this study was to quantitatively explore the impacts of various I4.0 technologies on CE practices.Design/methodology/approachA mixed method consisting of a systematic literature review, content analysis, and social network analysis was adopted. First, 266 articles were selected and mined for contents of I4.0 technologies and CE practices; 27 I4.0 technologies and 21 CE practices were identified. Second, 62 articles were found that prove the positive influence of I4.0 technologies on CE practices, and 124 relationships were identified. Third, based on evidence supporting the link between I4.0 technologies and CE practices, a two-mode network and two one-mode networks were constructed, and their network density and degree centrality indicators were analyzed.FindingsI4.0 technologies have a low application scope and degree for promoting CE. The adoption of a single I4.0 technology has limited effect on CE practices, and wider benefits can be realized through integrating I4.0 technologies. The Internet of Things (IoT), additive manufacturing, big data and analytics, and artificial intelligence (AI) are among the top technologies promoting CE implementation and reduction and recycling were identified as the main mechanism. The integration of these technologies is the most popular and effective. Twelve CE practices were identified to be the most widely implemented and supported by I4.0 technologies.Research limitations/implicationsFirst, only journal articles, reviews, and online publications written in English were selected, excluding articles published in other languages. Therefore, the results obtained only represent a specific group of scholars, which may be fragmented to a certain extent. Second, because the extraction of the impact of I4.0 on CE mainly relies on a manual literature review, this paper only provides the statistics of the number of publications involving relationships, while lacking the weight measurement of relationships.Originality/valueA comprehensive, quantitative, and visual analysis method was employed to unveil the current implementation levels of I4.0 technologies and CE practices. Further, it was explored how different I4.0 technologies can affect various CE aspects, how different I4.0 technologies are integrated to promote CE realization, and how various CE practices are implemented simultaneously by I4.0 technologies.","PeriodicalId":13427,"journal":{"name":"Ind. Manag. Data Syst.","volume":"7 21","pages":"1220-1251"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"How do different Industry 4.0 technologies support certain Circular Economy practices?\",\"authors\":\"Zhimei Lei, Shanshan Cai, Lili Cui, Lin Wu, Yiwei Liu\",\"doi\":\"10.1108/imds-05-2022-0270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PurposeUncovering the relationship between Industry 4.0 (I4.0) technologies and circular economy (CE) practices is critical not only for implementing CE but also for leveraging I4.0 to achieve sustainable development goals. However, the potential connection between them – especially how different I4.0 technologies may influence various CE practices – remains inadequately researched. The purpose of this study was to quantitatively explore the impacts of various I4.0 technologies on CE practices.Design/methodology/approachA mixed method consisting of a systematic literature review, content analysis, and social network analysis was adopted. First, 266 articles were selected and mined for contents of I4.0 technologies and CE practices; 27 I4.0 technologies and 21 CE practices were identified. Second, 62 articles were found that prove the positive influence of I4.0 technologies on CE practices, and 124 relationships were identified. Third, based on evidence supporting the link between I4.0 technologies and CE practices, a two-mode network and two one-mode networks were constructed, and their network density and degree centrality indicators were analyzed.FindingsI4.0 technologies have a low application scope and degree for promoting CE. The adoption of a single I4.0 technology has limited effect on CE practices, and wider benefits can be realized through integrating I4.0 technologies. The Internet of Things (IoT), additive manufacturing, big data and analytics, and artificial intelligence (AI) are among the top technologies promoting CE implementation and reduction and recycling were identified as the main mechanism. The integration of these technologies is the most popular and effective. Twelve CE practices were identified to be the most widely implemented and supported by I4.0 technologies.Research limitations/implicationsFirst, only journal articles, reviews, and online publications written in English were selected, excluding articles published in other languages. Therefore, the results obtained only represent a specific group of scholars, which may be fragmented to a certain extent. Second, because the extraction of the impact of I4.0 on CE mainly relies on a manual literature review, this paper only provides the statistics of the number of publications involving relationships, while lacking the weight measurement of relationships.Originality/valueA comprehensive, quantitative, and visual analysis method was employed to unveil the current implementation levels of I4.0 technologies and CE practices. Further, it was explored how different I4.0 technologies can affect various CE aspects, how different I4.0 technologies are integrated to promote CE realization, and how various CE practices are implemented simultaneously by I4.0 technologies.\",\"PeriodicalId\":13427,\"journal\":{\"name\":\"Ind. Manag. Data Syst.\",\"volume\":\"7 21\",\"pages\":\"1220-1251\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ind. Manag. Data Syst.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1108/imds-05-2022-0270\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ind. Manag. Data Syst.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/imds-05-2022-0270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
How do different Industry 4.0 technologies support certain Circular Economy practices?
PurposeUncovering the relationship between Industry 4.0 (I4.0) technologies and circular economy (CE) practices is critical not only for implementing CE but also for leveraging I4.0 to achieve sustainable development goals. However, the potential connection between them – especially how different I4.0 technologies may influence various CE practices – remains inadequately researched. The purpose of this study was to quantitatively explore the impacts of various I4.0 technologies on CE practices.Design/methodology/approachA mixed method consisting of a systematic literature review, content analysis, and social network analysis was adopted. First, 266 articles were selected and mined for contents of I4.0 technologies and CE practices; 27 I4.0 technologies and 21 CE practices were identified. Second, 62 articles were found that prove the positive influence of I4.0 technologies on CE practices, and 124 relationships were identified. Third, based on evidence supporting the link between I4.0 technologies and CE practices, a two-mode network and two one-mode networks were constructed, and their network density and degree centrality indicators were analyzed.FindingsI4.0 technologies have a low application scope and degree for promoting CE. The adoption of a single I4.0 technology has limited effect on CE practices, and wider benefits can be realized through integrating I4.0 technologies. The Internet of Things (IoT), additive manufacturing, big data and analytics, and artificial intelligence (AI) are among the top technologies promoting CE implementation and reduction and recycling were identified as the main mechanism. The integration of these technologies is the most popular and effective. Twelve CE practices were identified to be the most widely implemented and supported by I4.0 technologies.Research limitations/implicationsFirst, only journal articles, reviews, and online publications written in English were selected, excluding articles published in other languages. Therefore, the results obtained only represent a specific group of scholars, which may be fragmented to a certain extent. Second, because the extraction of the impact of I4.0 on CE mainly relies on a manual literature review, this paper only provides the statistics of the number of publications involving relationships, while lacking the weight measurement of relationships.Originality/valueA comprehensive, quantitative, and visual analysis method was employed to unveil the current implementation levels of I4.0 technologies and CE practices. Further, it was explored how different I4.0 technologies can affect various CE aspects, how different I4.0 technologies are integrated to promote CE realization, and how various CE practices are implemented simultaneously by I4.0 technologies.