芹菜素减轻四溴双酚a诱导的神经元SK-N-MC细胞的细胞毒性。

Eun Mi Choi, So Young Park, Kwang Sik Suh, Suk Chon
{"title":"芹菜素减轻四溴双酚a诱导的神经元SK-N-MC细胞的细胞毒性。","authors":"Eun Mi Choi,&nbsp;So Young Park,&nbsp;Kwang Sik Suh,&nbsp;Suk Chon","doi":"10.1080/10934529.2023.2182581","DOIUrl":null,"url":null,"abstract":"<p><p>Tetrabromobisphenol A (TBBPA) is a reactive brominated flame retardant widely used in various industrial and household products. This compound is persistent in the environment and accumulates in living organisms through the food chain, and is toxic to animals and human beings. Studies have shown that TBBPA is toxic to various human cell lines, including neuronal cells. Apigenin is a dietary flavonoid that exhibits various beneficial health effects on biological activities, including antioxidant, anti-inflammatory, and neuroprotective effects. This study investigated the cytoprotective effects of apigenin against TBBPA-mediated cytotoxicity in SK-N-MC cells. Our results demonstrated that treatment of SK-N-MC cells with apigenin increased the cell viability, which was decreased by TBBPA, and reduced apoptosis and autophagy induced by TBBPA. Although we did not observe any change in the levels of IL-1β and nitrite in cultured cells after TBBPA treatment, apigenin was found to decrease the production of these pro-inflammatory mediators. Apigenin decreased the intracellular Ca<sup>2+</sup> concentration, NOX4 level, oxidative stress, and mitochondrial membrane potential loss and increased the mitochondrial biogenesis and nuclear Nrf2 levels that were reduced by TBBPA. Finally, apigenin treatment decreased Akt and ERK induction in cells exposed to TBBPA. Based on these results, apigenin could be a promising candidate for designing natural drugs to treat or prevent TBBPA-related neurological disorders.</p>","PeriodicalId":15671,"journal":{"name":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Apigenin attenuates tetrabromobisphenol A-induced cytotoxicity in neuronal SK-N-MC cells.\",\"authors\":\"Eun Mi Choi,&nbsp;So Young Park,&nbsp;Kwang Sik Suh,&nbsp;Suk Chon\",\"doi\":\"10.1080/10934529.2023.2182581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tetrabromobisphenol A (TBBPA) is a reactive brominated flame retardant widely used in various industrial and household products. This compound is persistent in the environment and accumulates in living organisms through the food chain, and is toxic to animals and human beings. Studies have shown that TBBPA is toxic to various human cell lines, including neuronal cells. Apigenin is a dietary flavonoid that exhibits various beneficial health effects on biological activities, including antioxidant, anti-inflammatory, and neuroprotective effects. This study investigated the cytoprotective effects of apigenin against TBBPA-mediated cytotoxicity in SK-N-MC cells. Our results demonstrated that treatment of SK-N-MC cells with apigenin increased the cell viability, which was decreased by TBBPA, and reduced apoptosis and autophagy induced by TBBPA. Although we did not observe any change in the levels of IL-1β and nitrite in cultured cells after TBBPA treatment, apigenin was found to decrease the production of these pro-inflammatory mediators. Apigenin decreased the intracellular Ca<sup>2+</sup> concentration, NOX4 level, oxidative stress, and mitochondrial membrane potential loss and increased the mitochondrial biogenesis and nuclear Nrf2 levels that were reduced by TBBPA. Finally, apigenin treatment decreased Akt and ERK induction in cells exposed to TBBPA. Based on these results, apigenin could be a promising candidate for designing natural drugs to treat or prevent TBBPA-related neurological disorders.</p>\",\"PeriodicalId\":15671,\"journal\":{\"name\":\"Journal of Environmental Science and Health Part A-toxic\\\\/hazardous Substances & Environmental Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Science and Health Part A-toxic\\\\/hazardous Substances & Environmental Engineering\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/10934529.2023.2182581\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Science and Health Part A-toxic\\/hazardous Substances & Environmental Engineering","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/10934529.2023.2182581","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

四溴双酚A (TBBPA)是一种反应性溴化阻燃剂,广泛应用于各种工业和家用产品中。这种化合物在环境中持续存在,并通过食物链在生物体中积累,对动物和人类都是有毒的。研究表明,TBBPA对包括神经细胞在内的多种人类细胞系都有毒性。芹菜素是一种膳食类黄酮,具有多种有益健康的生物活性,包括抗氧化、抗炎和神经保护作用。本研究探讨了芹菜素对tbbpa介导的SK-N-MC细胞毒性的细胞保护作用。我们的研究结果表明,芹菜素处理SK-N-MC细胞提高了细胞活力,而TBBPA降低了细胞活力,并减少了TBBPA诱导的细胞凋亡和自噬。虽然我们没有观察到TBBPA处理后培养细胞中IL-1β和亚硝酸盐水平的任何变化,但我们发现芹菜素可以减少这些促炎介质的产生。芹菜素降低细胞内Ca2+浓度、NOX4水平、氧化应激和线粒体膜电位损失,增加线粒体生物发生和核Nrf2水平,这些水平被TBBPA降低。最后,芹菜素处理降低了暴露于TBBPA的细胞中Akt和ERK的诱导。基于这些结果,芹菜素可能是设计天然药物治疗或预防tbbpa相关神经系统疾病的有希望的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Apigenin attenuates tetrabromobisphenol A-induced cytotoxicity in neuronal SK-N-MC cells.

Tetrabromobisphenol A (TBBPA) is a reactive brominated flame retardant widely used in various industrial and household products. This compound is persistent in the environment and accumulates in living organisms through the food chain, and is toxic to animals and human beings. Studies have shown that TBBPA is toxic to various human cell lines, including neuronal cells. Apigenin is a dietary flavonoid that exhibits various beneficial health effects on biological activities, including antioxidant, anti-inflammatory, and neuroprotective effects. This study investigated the cytoprotective effects of apigenin against TBBPA-mediated cytotoxicity in SK-N-MC cells. Our results demonstrated that treatment of SK-N-MC cells with apigenin increased the cell viability, which was decreased by TBBPA, and reduced apoptosis and autophagy induced by TBBPA. Although we did not observe any change in the levels of IL-1β and nitrite in cultured cells after TBBPA treatment, apigenin was found to decrease the production of these pro-inflammatory mediators. Apigenin decreased the intracellular Ca2+ concentration, NOX4 level, oxidative stress, and mitochondrial membrane potential loss and increased the mitochondrial biogenesis and nuclear Nrf2 levels that were reduced by TBBPA. Finally, apigenin treatment decreased Akt and ERK induction in cells exposed to TBBPA. Based on these results, apigenin could be a promising candidate for designing natural drugs to treat or prevent TBBPA-related neurological disorders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.10
自引率
4.80%
发文量
93
审稿时长
3.0 months
期刊介绍: 14 issues per year Abstracted/indexed in: BioSciences Information Service of Biological Abstracts (BIOSIS), CAB ABSTRACTS, CEABA, Chemical Abstracts & Chemical Safety NewsBase, Current Contents/Agriculture, Biology, and Environmental Sciences, Elsevier BIOBASE/Current Awareness in Biological Sciences, EMBASE/Excerpta Medica, Engineering Index/COMPENDEX PLUS, Environment Abstracts, Environmental Periodicals Bibliography & INIST-Pascal/CNRS, National Agriculture Library-AGRICOLA, NIOSHTIC & Pollution Abstracts, PubSCIENCE, Reference Update, Research Alert & Science Citation Index Expanded (SCIE), Water Resources Abstracts and Index Medicus/MEDLINE.
期刊最新文献
In vitro assessment of acute airway effects from real-life mixtures of ozone-initiated oxidation products of limonene and printer exhaust. Monitoring of ketamine-based emerging contaminants in wastewater: a direct-injection method and fragmentation pathway study. Precision forecasting of spray-dry desulfurization using Gaussian noise data augmentation and k-fold cross-validation optimized neural computing. Machine learning, a powerful tool for the prediction of BiVO4 nanoparticles efficiency in photocatalytic degradation of organic dyes. Application of machine learning approach (artificial neural network) and shrinking core model in cobalt (II) and copper (II) leaching process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1