表征搜索引擎流量的互联网研究机构网络属性

Alexander Spangher, G. Ranade, Besmira Nushi, Adam Fourney, E. Horvitz
{"title":"表征搜索引擎流量的互联网研究机构网络属性","authors":"Alexander Spangher, G. Ranade, Besmira Nushi, Adam Fourney, E. Horvitz","doi":"10.1145/3366423.3380290","DOIUrl":null,"url":null,"abstract":"The Russia-based Internet Research Agency (IRA) carried out a broad information campaign in the U.S. before and after the 2016 presidential election. The organization created an expansive set of internet properties: web domains, Facebook pages, and Twitter bots, which received traffic via purchased Facebook ads, tweets, and search engines indexing their domains. In this paper, we focus on IRA activities that received exposure through search engines, by joining data from Facebook and Twitter with logs from the Internet Explorer 11 and Edge browsers and the Bing.com search engine. We find that a substantial volume of Russian content was apolitical and emotionally-neutral in nature. Our observations demonstrate that such content gave IRA web-properties considerable exposure through search-engines and brought readers to websites hosting inflammatory content and engagement hooks. Our findings show that, like social media, web search also directed traffic to IRA generated web content, and the resultant traffic patterns are distinct from those of social media.","PeriodicalId":20754,"journal":{"name":"Proceedings of The Web Conference 2020","volume":"79 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Characterizing Search-Engine Traffic to Internet Research Agency Web Properties\",\"authors\":\"Alexander Spangher, G. Ranade, Besmira Nushi, Adam Fourney, E. Horvitz\",\"doi\":\"10.1145/3366423.3380290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Russia-based Internet Research Agency (IRA) carried out a broad information campaign in the U.S. before and after the 2016 presidential election. The organization created an expansive set of internet properties: web domains, Facebook pages, and Twitter bots, which received traffic via purchased Facebook ads, tweets, and search engines indexing their domains. In this paper, we focus on IRA activities that received exposure through search engines, by joining data from Facebook and Twitter with logs from the Internet Explorer 11 and Edge browsers and the Bing.com search engine. We find that a substantial volume of Russian content was apolitical and emotionally-neutral in nature. Our observations demonstrate that such content gave IRA web-properties considerable exposure through search-engines and brought readers to websites hosting inflammatory content and engagement hooks. Our findings show that, like social media, web search also directed traffic to IRA generated web content, and the resultant traffic patterns are distinct from those of social media.\",\"PeriodicalId\":20754,\"journal\":{\"name\":\"Proceedings of The Web Conference 2020\",\"volume\":\"79 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of The Web Conference 2020\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3366423.3380290\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The Web Conference 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3366423.3380290","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

总部位于俄罗斯的互联网研究机构(IRA)在2016年总统大选前后在美国开展了广泛的信息宣传活动。该组织创建了一套庞大的互联网资产:网络域名、Facebook页面和Twitter机器人,它们通过购买Facebook广告、推文和索引其域名的搜索引擎获得流量。在本文中,我们通过将来自Facebook和Twitter的数据与Internet Explorer 11和Edge浏览器以及Bing.com搜索引擎的日志相结合,重点关注通过搜索引擎曝光的IRA活动。我们发现大量的俄罗斯内容在本质上是非政治和情感中立的。我们的观察表明,这些内容通过搜索引擎给IRA网站带来了相当大的曝光率,并将读者带到了承载煽动性内容和吸引人的网站上。我们的研究结果表明,与社交媒体一样,网络搜索也会将流量导向IRA生成的网络内容,并且由此产生的流量模式与社交媒体截然不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterizing Search-Engine Traffic to Internet Research Agency Web Properties
The Russia-based Internet Research Agency (IRA) carried out a broad information campaign in the U.S. before and after the 2016 presidential election. The organization created an expansive set of internet properties: web domains, Facebook pages, and Twitter bots, which received traffic via purchased Facebook ads, tweets, and search engines indexing their domains. In this paper, we focus on IRA activities that received exposure through search engines, by joining data from Facebook and Twitter with logs from the Internet Explorer 11 and Edge browsers and the Bing.com search engine. We find that a substantial volume of Russian content was apolitical and emotionally-neutral in nature. Our observations demonstrate that such content gave IRA web-properties considerable exposure through search-engines and brought readers to websites hosting inflammatory content and engagement hooks. Our findings show that, like social media, web search also directed traffic to IRA generated web content, and the resultant traffic patterns are distinct from those of social media.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gone, Gone, but Not Really, and Gone, But Not forgotten: A Typology of Website Recoverability Those who are left behind: A chronicle of internet access in Cuba Towards Automated Technologies in the Referencing Quality of Wikidata Companion of The Web Conference 2022, Virtual Event / Lyon, France, April 25 - 29, 2022 WWW '21: The Web Conference 2021, Virtual Event / Ljubljana, Slovenia, April 19-23, 2021
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1