健康和2型糖尿病患者胰岛β细胞的伪时间顺序单细胞转录组学研究

IF 3.7 Q2 GENETICS & HEREDITY Phenomics (Cham, Switzerland) Pub Date : 2021-10-01 DOI:10.1007/s43657-021-00024-z
Kaixuan Bao, Zhicheng Cui, Hui Wang, Hui Xiao, Ting Li, Xingxing Kong, Tiemin Liu
{"title":"健康和2型糖尿病患者胰岛β细胞的伪时间顺序单细胞转录组学研究","authors":"Kaixuan Bao,&nbsp;Zhicheng Cui,&nbsp;Hui Wang,&nbsp;Hui Xiao,&nbsp;Ting Li,&nbsp;Xingxing Kong,&nbsp;Tiemin Liu","doi":"10.1007/s43657-021-00024-z","DOIUrl":null,"url":null,"abstract":"<p><p>β cells are defined by the ability to produce and secret insulin. Recent studies have evaluated that human pancreatic β cells are heterogeneous and demonstrated the transcript alterations of β cell subpopulation in diabetes. Single-cell RNA sequence (scRNA-seq) analysis helps us to refine the cell types signatures and understand the role of the β cells during metabolic challenges and diseases. Here, we construct the pseudotime trajectory of β cells from publicly available scRNA-seq data in health and type 2 diabetes (T2D) based on highly dispersed and highly expressed genes using Monocle2. We identified three major states including 1) Normal branch, 2) Obesity-like branch and 3) T2D-like branch based on biomarker genes and genes that give rise to bifurcation in the trajectory. β cell function-maintain-related genes, insulin expression-related genes, and T2D-related genes enriched in three branches, respectively. Continuous pseudotime spectrum might suggest that β cells transition among different states. The application of pseudotime analysis is conducted to clarify the different cell states, providing novel insights into the pathology of β cells in T2D.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material is available at 10.1007/s43657-021-00024-z.</p>","PeriodicalId":74435,"journal":{"name":"Phenomics (Cham, Switzerland)","volume":"1 5","pages":"199-210"},"PeriodicalIF":3.7000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9590480/pdf/43657_2021_Article_24.pdf","citationCount":"4","resultStr":"{\"title\":\"Pseudotime Ordering Single-Cell Transcriptomic of β Cells Pancreatic Islets in Health and Type 2 Diabetes.\",\"authors\":\"Kaixuan Bao,&nbsp;Zhicheng Cui,&nbsp;Hui Wang,&nbsp;Hui Xiao,&nbsp;Ting Li,&nbsp;Xingxing Kong,&nbsp;Tiemin Liu\",\"doi\":\"10.1007/s43657-021-00024-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>β cells are defined by the ability to produce and secret insulin. Recent studies have evaluated that human pancreatic β cells are heterogeneous and demonstrated the transcript alterations of β cell subpopulation in diabetes. Single-cell RNA sequence (scRNA-seq) analysis helps us to refine the cell types signatures and understand the role of the β cells during metabolic challenges and diseases. Here, we construct the pseudotime trajectory of β cells from publicly available scRNA-seq data in health and type 2 diabetes (T2D) based on highly dispersed and highly expressed genes using Monocle2. We identified three major states including 1) Normal branch, 2) Obesity-like branch and 3) T2D-like branch based on biomarker genes and genes that give rise to bifurcation in the trajectory. β cell function-maintain-related genes, insulin expression-related genes, and T2D-related genes enriched in three branches, respectively. Continuous pseudotime spectrum might suggest that β cells transition among different states. The application of pseudotime analysis is conducted to clarify the different cell states, providing novel insights into the pathology of β cells in T2D.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material is available at 10.1007/s43657-021-00024-z.</p>\",\"PeriodicalId\":74435,\"journal\":{\"name\":\"Phenomics (Cham, Switzerland)\",\"volume\":\"1 5\",\"pages\":\"199-210\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9590480/pdf/43657_2021_Article_24.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phenomics (Cham, Switzerland)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s43657-021-00024-z\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phenomics (Cham, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s43657-021-00024-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 4

摘要

β细胞的定义是产生和分泌胰岛素的能力。最近的研究已经评估了人类胰腺β细胞是异质的,并证明了β细胞亚群在糖尿病中的转录改变。单细胞RNA序列(scRNA-seq)分析有助于我们完善细胞类型特征,并了解β细胞在代谢挑战和疾病中的作用。在这里,我们使用Monocle2基于高度分散和高表达的基因,从公开可用的健康和2型糖尿病(T2D)患者的scRNA-seq数据构建了β细胞的伪时间轨迹。基于生物标志物基因和导致轨迹分叉的基因,我们确定了三种主要状态,包括1)正常分支,2)肥胖样分支和3)t2d样分支。β细胞功能维持相关基因、胰岛素表达相关基因和t2d相关基因分别富集于三个分支。连续的伪时间谱可能提示β细胞在不同状态间转换。应用伪时间分析来澄清不同的细胞状态,为T2D中β细胞的病理提供新的见解。补充信息:在线版本包含补充资料,下载地址:10.1007/s43657-021-00024-z。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pseudotime Ordering Single-Cell Transcriptomic of β Cells Pancreatic Islets in Health and Type 2 Diabetes.

β cells are defined by the ability to produce and secret insulin. Recent studies have evaluated that human pancreatic β cells are heterogeneous and demonstrated the transcript alterations of β cell subpopulation in diabetes. Single-cell RNA sequence (scRNA-seq) analysis helps us to refine the cell types signatures and understand the role of the β cells during metabolic challenges and diseases. Here, we construct the pseudotime trajectory of β cells from publicly available scRNA-seq data in health and type 2 diabetes (T2D) based on highly dispersed and highly expressed genes using Monocle2. We identified three major states including 1) Normal branch, 2) Obesity-like branch and 3) T2D-like branch based on biomarker genes and genes that give rise to bifurcation in the trajectory. β cell function-maintain-related genes, insulin expression-related genes, and T2D-related genes enriched in three branches, respectively. Continuous pseudotime spectrum might suggest that β cells transition among different states. The application of pseudotime analysis is conducted to clarify the different cell states, providing novel insights into the pathology of β cells in T2D.

Supplementary information: The online version contains supplementary material is available at 10.1007/s43657-021-00024-z.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation on Phenomics of Traditional Chinese Medicine from the Diabetes. Expert Consensus on Big Data Collection of Skin and Appendage Disease Phenotypes in Chinese. Synergistically Augmenting Cancer Immunotherapy by Physical Manipulation of Pyroptosis Induction. Report on the 4th Board Meeting of the International Human Phenome Consortium. A Noninvasive Approach to Evaluate Tumor Immune Microenvironment and Predict Outcomes in Hepatocellular Carcinoma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1