{"title":"无线SDN移动自组网:从理论到实践","authors":"Hans C. Yu, Giorgio Quer, R. Rao","doi":"10.1109/ICC.2017.7996340","DOIUrl":null,"url":null,"abstract":"A promising approach for dealing with the increasing demand of data traffic is the use of device-to-device (D2D) technologies, in particular when the destination can be reached directly, or though few retransmissions by peer devices. Thus, the cellular network can offload local traffic that is transmitted by an ad hoc network, e.g., a mobile ad hoc network (MANET), or a vehicular ad hoc network (VANET). The cellular base station can help coordinate all the devices in the ad hoc network by reusing the software tools developed for software-defined networks (SDNs), which divide the control and the data messages, transmitted in two separate interfaces. In this paper, we present a practical implementation of an SDN MANET, describe in detail the software components that we adopted, and provide a repository for all the new components that we developed. This work can be a starting point for the wireless networking community to design new testbeds with SDN capabilities that can have the advantages of D2D data transmissions and the flexibility of a centralized network management. In order to prove the feasibility of such a network, we also showcase the performance of the proposed network implemented in real devices, as compared to a distributed ad hoc network.","PeriodicalId":6517,"journal":{"name":"2017 IEEE International Conference on Communications (ICC)","volume":"263 3","pages":"1-7"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":"{\"title\":\"Wireless SDN mobile ad hoc network: From theory to practice\",\"authors\":\"Hans C. Yu, Giorgio Quer, R. Rao\",\"doi\":\"10.1109/ICC.2017.7996340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A promising approach for dealing with the increasing demand of data traffic is the use of device-to-device (D2D) technologies, in particular when the destination can be reached directly, or though few retransmissions by peer devices. Thus, the cellular network can offload local traffic that is transmitted by an ad hoc network, e.g., a mobile ad hoc network (MANET), or a vehicular ad hoc network (VANET). The cellular base station can help coordinate all the devices in the ad hoc network by reusing the software tools developed for software-defined networks (SDNs), which divide the control and the data messages, transmitted in two separate interfaces. In this paper, we present a practical implementation of an SDN MANET, describe in detail the software components that we adopted, and provide a repository for all the new components that we developed. This work can be a starting point for the wireless networking community to design new testbeds with SDN capabilities that can have the advantages of D2D data transmissions and the flexibility of a centralized network management. In order to prove the feasibility of such a network, we also showcase the performance of the proposed network implemented in real devices, as compared to a distributed ad hoc network.\",\"PeriodicalId\":6517,\"journal\":{\"name\":\"2017 IEEE International Conference on Communications (ICC)\",\"volume\":\"263 3\",\"pages\":\"1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"57\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Communications (ICC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICC.2017.7996340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Communications (ICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICC.2017.7996340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Wireless SDN mobile ad hoc network: From theory to practice
A promising approach for dealing with the increasing demand of data traffic is the use of device-to-device (D2D) technologies, in particular when the destination can be reached directly, or though few retransmissions by peer devices. Thus, the cellular network can offload local traffic that is transmitted by an ad hoc network, e.g., a mobile ad hoc network (MANET), or a vehicular ad hoc network (VANET). The cellular base station can help coordinate all the devices in the ad hoc network by reusing the software tools developed for software-defined networks (SDNs), which divide the control and the data messages, transmitted in two separate interfaces. In this paper, we present a practical implementation of an SDN MANET, describe in detail the software components that we adopted, and provide a repository for all the new components that we developed. This work can be a starting point for the wireless networking community to design new testbeds with SDN capabilities that can have the advantages of D2D data transmissions and the flexibility of a centralized network management. In order to prove the feasibility of such a network, we also showcase the performance of the proposed network implemented in real devices, as compared to a distributed ad hoc network.