{"title":"结构环境下的磁振子辅助光子-声子转换","authors":"Shi-fan Qi, J. Jing","doi":"10.1103/PHYSREVA.103.043704","DOIUrl":null,"url":null,"abstract":"Quantum conversion or interface is one of the most prominent protocols in quantum information processing and quantum state engineering. We propose a photon-phonon conversion protocol in a hybrid magnomechanical system comprising a microwave optical mode, a driven magnon mode and a mechanical-vibrating mode. The microwave photons in the optical cavity are coupled to the magnons by the magnetic-dipole interaction, and the latter are coupled to the mechanical phonons by the magnetostrictive interaction. With strong photon-magnon interaction and strong driving on magnon, an effective Hamiltonian is constructed to describe the conversion between photons and phonons nearby their resonant point. The cavity-magnon system can then play the role of a quantum memory. Moreover, the faithfulness of the photon-phonon conversion is estimated in terms of fidelities for state evolution and state-independent transfer. The former is discussed in the Lindblad master equation taking account the leakages of photon, phonon and magnon into consideration. The latter is derived by the Heisenberg-Langevin equation considering the non-Markovian noise from the structured environments for both optical and mechanical modes. The state-evolution fidelity is found to be robust to the weak leakage. The transfer fidelity can be maintained by the Ohmic and sub-Ohmic environments of the photons and is insensitive to the $1/f$ noise of the phonons. Our work thus provides an interesting application for the magnon system as a photon-phonon converter in the microwave regime.","PeriodicalId":8484,"journal":{"name":"arXiv: Quantum Physics","volume":"127 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":"{\"title\":\"Magnon-assisted photon-phonon conversion in the presence of structured environments\",\"authors\":\"Shi-fan Qi, J. Jing\",\"doi\":\"10.1103/PHYSREVA.103.043704\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum conversion or interface is one of the most prominent protocols in quantum information processing and quantum state engineering. We propose a photon-phonon conversion protocol in a hybrid magnomechanical system comprising a microwave optical mode, a driven magnon mode and a mechanical-vibrating mode. The microwave photons in the optical cavity are coupled to the magnons by the magnetic-dipole interaction, and the latter are coupled to the mechanical phonons by the magnetostrictive interaction. With strong photon-magnon interaction and strong driving on magnon, an effective Hamiltonian is constructed to describe the conversion between photons and phonons nearby their resonant point. The cavity-magnon system can then play the role of a quantum memory. Moreover, the faithfulness of the photon-phonon conversion is estimated in terms of fidelities for state evolution and state-independent transfer. The former is discussed in the Lindblad master equation taking account the leakages of photon, phonon and magnon into consideration. The latter is derived by the Heisenberg-Langevin equation considering the non-Markovian noise from the structured environments for both optical and mechanical modes. The state-evolution fidelity is found to be robust to the weak leakage. The transfer fidelity can be maintained by the Ohmic and sub-Ohmic environments of the photons and is insensitive to the $1/f$ noise of the phonons. Our work thus provides an interesting application for the magnon system as a photon-phonon converter in the microwave regime.\",\"PeriodicalId\":8484,\"journal\":{\"name\":\"arXiv: Quantum Physics\",\"volume\":\"127 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Quantum Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1103/PHYSREVA.103.043704\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Quantum Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVA.103.043704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Magnon-assisted photon-phonon conversion in the presence of structured environments
Quantum conversion or interface is one of the most prominent protocols in quantum information processing and quantum state engineering. We propose a photon-phonon conversion protocol in a hybrid magnomechanical system comprising a microwave optical mode, a driven magnon mode and a mechanical-vibrating mode. The microwave photons in the optical cavity are coupled to the magnons by the magnetic-dipole interaction, and the latter are coupled to the mechanical phonons by the magnetostrictive interaction. With strong photon-magnon interaction and strong driving on magnon, an effective Hamiltonian is constructed to describe the conversion between photons and phonons nearby their resonant point. The cavity-magnon system can then play the role of a quantum memory. Moreover, the faithfulness of the photon-phonon conversion is estimated in terms of fidelities for state evolution and state-independent transfer. The former is discussed in the Lindblad master equation taking account the leakages of photon, phonon and magnon into consideration. The latter is derived by the Heisenberg-Langevin equation considering the non-Markovian noise from the structured environments for both optical and mechanical modes. The state-evolution fidelity is found to be robust to the weak leakage. The transfer fidelity can be maintained by the Ohmic and sub-Ohmic environments of the photons and is insensitive to the $1/f$ noise of the phonons. Our work thus provides an interesting application for the magnon system as a photon-phonon converter in the microwave regime.