具有高度可变客户基础和随机需求的车辆路径问题的离线近似动态规划

M. Dastpak, F. Errico, O. Jabali
{"title":"具有高度可变客户基础和随机需求的车辆路径问题的离线近似动态规划","authors":"M. Dastpak, F. Errico, O. Jabali","doi":"10.2139/ssrn.4251159","DOIUrl":null,"url":null,"abstract":"We study a stochastic variant of the vehicle routing problem arising in the context of domestic donor collection services. The problem we consider combines the following attributes. Customers requesting services are variable, in the sense that the customers are stochastic but are not restricted to a predefined set, as they may appear anywhere in a given service area. Furthermore, demand volumes are stochastic and observed upon visiting the customer. The objective is to maximize the expected served demands while meeting vehicle capacity and time restrictions. We call this problem the VRP with a highly Variable Customer basis and Stochastic Demands (VRP-VCSD). For this problem, we first propose a Markov Decision Process (MDP) formulation representing the classical centralized decision-making perspective where one decision-maker establishes the routes of all vehicles. While the resulting formulation turns out to be intractable, it provides us with the ground to develop a new MDP formulation, which we call partially decentralized. In this formulation, the action-space is decomposed by vehicle. However, the decentralization is incomplete as we enforce identical vehicle-specific policies while optimizing the collective reward. We propose several strategies to reduce the dimension of the state and action spaces associated with the partially decentralized formulation. These yield a considerably more tractable problem, which we solve via Reinforcement Learning. In particular, we develop a Q-learning algorithm called DecQN, featuring state-of-the-art acceleration techniques. We conduct a thorough computational analysis. Results show that DecQN considerably outperforms three benchmark policies. Moreover, we show that our approach can compete with specialized methods developed for the particular case of the VRP-VCSD, where customer locations and expected demands are known in advance.","PeriodicalId":10582,"journal":{"name":"Comput. Oper. Res.","volume":"18 11","pages":"106338"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Off-line approximate dynamic programming for the vehicle routing problem with a highly variable customer basis and stochastic demands\",\"authors\":\"M. Dastpak, F. Errico, O. Jabali\",\"doi\":\"10.2139/ssrn.4251159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a stochastic variant of the vehicle routing problem arising in the context of domestic donor collection services. The problem we consider combines the following attributes. Customers requesting services are variable, in the sense that the customers are stochastic but are not restricted to a predefined set, as they may appear anywhere in a given service area. Furthermore, demand volumes are stochastic and observed upon visiting the customer. The objective is to maximize the expected served demands while meeting vehicle capacity and time restrictions. We call this problem the VRP with a highly Variable Customer basis and Stochastic Demands (VRP-VCSD). For this problem, we first propose a Markov Decision Process (MDP) formulation representing the classical centralized decision-making perspective where one decision-maker establishes the routes of all vehicles. While the resulting formulation turns out to be intractable, it provides us with the ground to develop a new MDP formulation, which we call partially decentralized. In this formulation, the action-space is decomposed by vehicle. However, the decentralization is incomplete as we enforce identical vehicle-specific policies while optimizing the collective reward. We propose several strategies to reduce the dimension of the state and action spaces associated with the partially decentralized formulation. These yield a considerably more tractable problem, which we solve via Reinforcement Learning. In particular, we develop a Q-learning algorithm called DecQN, featuring state-of-the-art acceleration techniques. We conduct a thorough computational analysis. Results show that DecQN considerably outperforms three benchmark policies. Moreover, we show that our approach can compete with specialized methods developed for the particular case of the VRP-VCSD, where customer locations and expected demands are known in advance.\",\"PeriodicalId\":10582,\"journal\":{\"name\":\"Comput. Oper. Res.\",\"volume\":\"18 11\",\"pages\":\"106338\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comput. Oper. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.4251159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.4251159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了在国内捐赠收集服务的背景下产生的车辆路线问题的随机变体。我们考虑的问题结合了以下属性。请求服务的客户是可变的,从某种意义上说,客户是随机的,但不限于预定义的集合,因为他们可能出现在给定服务区域的任何地方。此外,需求量是随机的,是在拜访客户时观察到的。目标是在满足车辆容量和时间限制的情况下,最大限度地提高预期的服务需求。我们称这个问题为具有高度可变客户基础和随机需求的VRP (VRP- vcsd)。针对这一问题,我们首先提出了一个马尔可夫决策过程(MDP)公式,表示经典的集中式决策视角,其中一个决策者建立所有车辆的路线。虽然最终的公式是难以处理的,但它为我们提供了开发新的MDP公式的基础,我们称之为部分分散的公式。在这个公式中,动作空间被车辆分解。然而,去中心化是不完整的,因为我们在优化集体奖励的同时执行了相同的车辆特定策略。我们提出了几种策略来减少与部分分散公式相关的状态和动作空间的维度。这些产生了一个相当容易处理的问题,我们通过强化学习来解决这个问题。特别是,我们开发了一种称为DecQN的q学习算法,具有最先进的加速技术。我们进行了彻底的计算分析。结果表明,DecQN显著优于三种基准策略。此外,我们表明,我们的方法可以与针对VRP-VCSD的特殊情况开发的专门方法竞争,在VRP-VCSD中,客户位置和预期需求是提前已知的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Off-line approximate dynamic programming for the vehicle routing problem with a highly variable customer basis and stochastic demands
We study a stochastic variant of the vehicle routing problem arising in the context of domestic donor collection services. The problem we consider combines the following attributes. Customers requesting services are variable, in the sense that the customers are stochastic but are not restricted to a predefined set, as they may appear anywhere in a given service area. Furthermore, demand volumes are stochastic and observed upon visiting the customer. The objective is to maximize the expected served demands while meeting vehicle capacity and time restrictions. We call this problem the VRP with a highly Variable Customer basis and Stochastic Demands (VRP-VCSD). For this problem, we first propose a Markov Decision Process (MDP) formulation representing the classical centralized decision-making perspective where one decision-maker establishes the routes of all vehicles. While the resulting formulation turns out to be intractable, it provides us with the ground to develop a new MDP formulation, which we call partially decentralized. In this formulation, the action-space is decomposed by vehicle. However, the decentralization is incomplete as we enforce identical vehicle-specific policies while optimizing the collective reward. We propose several strategies to reduce the dimension of the state and action spaces associated with the partially decentralized formulation. These yield a considerably more tractable problem, which we solve via Reinforcement Learning. In particular, we develop a Q-learning algorithm called DecQN, featuring state-of-the-art acceleration techniques. We conduct a thorough computational analysis. Results show that DecQN considerably outperforms three benchmark policies. Moreover, we show that our approach can compete with specialized methods developed for the particular case of the VRP-VCSD, where customer locations and expected demands are known in advance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A family of hybrid conjugate gradient method with restart procedure for unconstrained optimizations and image restorations Dual-neighborhood iterated local search for routing and wavelength assignment Using submodularity in solving the robust bandwidth packing problem with queuing delay guarantees Loads scheduling for demand response in energy communities Simulation-based inventory management of perishable products via linear discrete choice models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1