用于自动驾驶汽车演进的汽车视频数据采集系统的实现

Igor Kolak, Ž. Lukač, M. Knezic, Stefan Končar
{"title":"用于自动驾驶汽车演进的汽车视频数据采集系统的实现","authors":"Igor Kolak, Ž. Lukač, M. Knezic, Stefan Končar","doi":"10.1109/ZINC50678.2020.9161439","DOIUrl":null,"url":null,"abstract":"Automotive vision systems represent a fast-growing application area and offer the potential of significant enhancements to automotive safety. In order to train ADAS (Advanced driver-assistance systems) algorithms with real-world data, high amount of video data needs to be captured. In this paper, we present one solution to capture high resolution and high frequency video data. Specifically, we capture 2 MPx (Megapixel) video data at 60 FPS (Frames per second) without compression and store it in real-time for later reproduction.","PeriodicalId":6731,"journal":{"name":"2020 Zooming Innovation in Consumer Technologies Conference (ZINC)","volume":"31 3","pages":"160-164"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Realization of automotive video data acquisition system for usage in evolution of autonomous vehicles\",\"authors\":\"Igor Kolak, Ž. Lukač, M. Knezic, Stefan Končar\",\"doi\":\"10.1109/ZINC50678.2020.9161439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automotive vision systems represent a fast-growing application area and offer the potential of significant enhancements to automotive safety. In order to train ADAS (Advanced driver-assistance systems) algorithms with real-world data, high amount of video data needs to be captured. In this paper, we present one solution to capture high resolution and high frequency video data. Specifically, we capture 2 MPx (Megapixel) video data at 60 FPS (Frames per second) without compression and store it in real-time for later reproduction.\",\"PeriodicalId\":6731,\"journal\":{\"name\":\"2020 Zooming Innovation in Consumer Technologies Conference (ZINC)\",\"volume\":\"31 3\",\"pages\":\"160-164\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Zooming Innovation in Consumer Technologies Conference (ZINC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ZINC50678.2020.9161439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Zooming Innovation in Consumer Technologies Conference (ZINC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ZINC50678.2020.9161439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

汽车视觉系统代表了一个快速发展的应用领域,并提供了显著增强汽车安全性的潜力。为了训练ADAS(高级驾驶辅助系统)算法与现实世界的数据,需要捕获大量的视频数据。本文提出了一种捕获高分辨率、高频率视频数据的解决方案。具体来说,我们以每秒60帧(FPS)的速度捕获2 MPx(百万像素)的视频数据,而不进行压缩,并将其实时存储以供以后再现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Realization of automotive video data acquisition system for usage in evolution of autonomous vehicles
Automotive vision systems represent a fast-growing application area and offer the potential of significant enhancements to automotive safety. In order to train ADAS (Advanced driver-assistance systems) algorithms with real-world data, high amount of video data needs to be captured. In this paper, we present one solution to capture high resolution and high frequency video data. Specifically, we capture 2 MPx (Megapixel) video data at 60 FPS (Frames per second) without compression and store it in real-time for later reproduction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting Plant Water and Soil Nutrient Requirements RFM and Classification Predictive Modelling to Improve Response Prediction Rate Utility analysis and rating of energy storages in trolleybus power supply system Face recognition based on selection approach via Canonical Correlation Analysis feature fusion The Concept of Consumer IP Address Preservation Behind the Load Balancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1