Michele Merler, Hui Wu, Rosario A. Uceda-Sosa, Q. Nguyen, John R. Smith
{"title":"Snap, Eat, RepEat:一个用于饮食记录的食物识别引擎","authors":"Michele Merler, Hui Wu, Rosario A. Uceda-Sosa, Q. Nguyen, John R. Smith","doi":"10.1145/2986035.2986036","DOIUrl":null,"url":null,"abstract":"We present a system to assist users in dietary logging habits, which performs food recognition from pictures snapped on their phone in two different scenarios. In the first scenario, called \"Food in context\", we exploit the GPS information of a user to determine which restaurant they are having a meal at, therefore restricting the categories to recognize to the set of items in the menu. Such context allows us to also report precise calories information to the user about their meal, since restaurant chains tend to standardize portions and provide the dietary information of each meal. In the second scenario, called \"Foods in the wild\" we try to recognize a cooked meal from a picture which could be snapped anywhere. We perform extensive experiments on food recognition on both scenarios, demonstrating the feasibility of our approach at scale, on a newly introduced dataset with 105K images for 500 food categories.","PeriodicalId":91925,"journal":{"name":"MADiMa'16 : proceedings of the 2nd International Workshop on Multimedia Assisted Dietary Management : October 16, 2016, Amsterdam, The Netherlands. International Workshop on Multimedia Assisted Dietary Management (2nd : 2016 : Amsterdam...","volume":"73 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":"{\"title\":\"Snap, Eat, RepEat: A Food Recognition Engine for Dietary Logging\",\"authors\":\"Michele Merler, Hui Wu, Rosario A. Uceda-Sosa, Q. Nguyen, John R. Smith\",\"doi\":\"10.1145/2986035.2986036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a system to assist users in dietary logging habits, which performs food recognition from pictures snapped on their phone in two different scenarios. In the first scenario, called \\\"Food in context\\\", we exploit the GPS information of a user to determine which restaurant they are having a meal at, therefore restricting the categories to recognize to the set of items in the menu. Such context allows us to also report precise calories information to the user about their meal, since restaurant chains tend to standardize portions and provide the dietary information of each meal. In the second scenario, called \\\"Foods in the wild\\\" we try to recognize a cooked meal from a picture which could be snapped anywhere. We perform extensive experiments on food recognition on both scenarios, demonstrating the feasibility of our approach at scale, on a newly introduced dataset with 105K images for 500 food categories.\",\"PeriodicalId\":91925,\"journal\":{\"name\":\"MADiMa'16 : proceedings of the 2nd International Workshop on Multimedia Assisted Dietary Management : October 16, 2016, Amsterdam, The Netherlands. International Workshop on Multimedia Assisted Dietary Management (2nd : 2016 : Amsterdam...\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"36\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MADiMa'16 : proceedings of the 2nd International Workshop on Multimedia Assisted Dietary Management : October 16, 2016, Amsterdam, The Netherlands. International Workshop on Multimedia Assisted Dietary Management (2nd : 2016 : Amsterdam...\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2986035.2986036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MADiMa'16 : proceedings of the 2nd International Workshop on Multimedia Assisted Dietary Management : October 16, 2016, Amsterdam, The Netherlands. International Workshop on Multimedia Assisted Dietary Management (2nd : 2016 : Amsterdam...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2986035.2986036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Snap, Eat, RepEat: A Food Recognition Engine for Dietary Logging
We present a system to assist users in dietary logging habits, which performs food recognition from pictures snapped on their phone in two different scenarios. In the first scenario, called "Food in context", we exploit the GPS information of a user to determine which restaurant they are having a meal at, therefore restricting the categories to recognize to the set of items in the menu. Such context allows us to also report precise calories information to the user about their meal, since restaurant chains tend to standardize portions and provide the dietary information of each meal. In the second scenario, called "Foods in the wild" we try to recognize a cooked meal from a picture which could be snapped anywhere. We perform extensive experiments on food recognition on both scenarios, demonstrating the feasibility of our approach at scale, on a newly introduced dataset with 105K images for 500 food categories.