Javier de la Rosa, Alejandro Urdiciain, Juan Aznar-Morales, B. Meléndez, J. Rey, M. Idoate, J. Castresana
{"title":"Panobinostat及其联合3-deazaneplanocin-A诱导GOS-3胶质母细胞瘤细胞株凋亡并抑制其体外肿瘤发生和转移","authors":"Javier de la Rosa, Alejandro Urdiciain, Juan Aznar-Morales, B. Meléndez, J. Rey, M. Idoate, J. Castresana","doi":"10.4103/ctm.ctm_12_18","DOIUrl":null,"url":null,"abstract":"Aim: Glioblastoma is the most malignant primary brain tumor. The treatment consists of surgery, with or without radiotherapy, and temozolomide, with a life expectancy of 12–15 months after diagnosis. Glioblastoma is resistant to conventional antitumor therapies. In this work, we present a preliminary in vitro study of two epigenetic drugs against GOS-3 glioblastoma cells. Methods: We used (1) panobinostat, a histone deacetylase inhibitor, and (2) 3-deazaneplanocin-A (DZ-Nep), an inhibitor of enhancer of zeste homolog 2 (EZH2) (enzyme of the polycomb repressor complex 2, polycomb group of proteins that trimethylate lysine 27 of histone 3-H3K27 me3-), as treatments that might modulate the PI3K pathway, affected in GOS-3 cells due to PTEN haploinsufficiency. The glioblastoma cell line GOS-3 was exposed to DZ-Nep and panobinostat treatments, separately and in combination, over a period of 2 days, after which cell migration, clonogenicity, and molecular expression characterization assays were performed. Results: Panobinostat alone or the combination of panobinostat plus DZ-Nep inhibited clonogenicity, metastasis, angiogenesis, epithelial–mesenchymal transition, and entry in the S phase of the cell cycle and induced apoptosis in GOS-3 glioblastoma cells. On the contrary, DZ-Nep inhibited cell migration (single treatment) and O(6)-methylguanine-DNA methyltransferase expression (DZ-Nep or double treatment). Conclusion: Panobinostat alone or the combination of panobinostat and DZ-Nep induce apoptosis and inhibit in vitro tumorigenesis and metastasis in GOS-3 glioblastoma cell lines.","PeriodicalId":9428,"journal":{"name":"Cancer Translational Medicine","volume":"65 1","pages":"39 - 47"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Panobinostat and its combination with 3-deazaneplanocin-A induce apoptosis and inhibit In vitro tumorigenesis and metastasis in GOS-3 glioblastoma cell lines\",\"authors\":\"Javier de la Rosa, Alejandro Urdiciain, Juan Aznar-Morales, B. Meléndez, J. Rey, M. Idoate, J. Castresana\",\"doi\":\"10.4103/ctm.ctm_12_18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aim: Glioblastoma is the most malignant primary brain tumor. The treatment consists of surgery, with or without radiotherapy, and temozolomide, with a life expectancy of 12–15 months after diagnosis. Glioblastoma is resistant to conventional antitumor therapies. In this work, we present a preliminary in vitro study of two epigenetic drugs against GOS-3 glioblastoma cells. Methods: We used (1) panobinostat, a histone deacetylase inhibitor, and (2) 3-deazaneplanocin-A (DZ-Nep), an inhibitor of enhancer of zeste homolog 2 (EZH2) (enzyme of the polycomb repressor complex 2, polycomb group of proteins that trimethylate lysine 27 of histone 3-H3K27 me3-), as treatments that might modulate the PI3K pathway, affected in GOS-3 cells due to PTEN haploinsufficiency. The glioblastoma cell line GOS-3 was exposed to DZ-Nep and panobinostat treatments, separately and in combination, over a period of 2 days, after which cell migration, clonogenicity, and molecular expression characterization assays were performed. Results: Panobinostat alone or the combination of panobinostat plus DZ-Nep inhibited clonogenicity, metastasis, angiogenesis, epithelial–mesenchymal transition, and entry in the S phase of the cell cycle and induced apoptosis in GOS-3 glioblastoma cells. On the contrary, DZ-Nep inhibited cell migration (single treatment) and O(6)-methylguanine-DNA methyltransferase expression (DZ-Nep or double treatment). Conclusion: Panobinostat alone or the combination of panobinostat and DZ-Nep induce apoptosis and inhibit in vitro tumorigenesis and metastasis in GOS-3 glioblastoma cell lines.\",\"PeriodicalId\":9428,\"journal\":{\"name\":\"Cancer Translational Medicine\",\"volume\":\"65 1\",\"pages\":\"39 - 47\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Translational Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/ctm.ctm_12_18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Translational Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/ctm.ctm_12_18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Panobinostat and its combination with 3-deazaneplanocin-A induce apoptosis and inhibit In vitro tumorigenesis and metastasis in GOS-3 glioblastoma cell lines
Aim: Glioblastoma is the most malignant primary brain tumor. The treatment consists of surgery, with or without radiotherapy, and temozolomide, with a life expectancy of 12–15 months after diagnosis. Glioblastoma is resistant to conventional antitumor therapies. In this work, we present a preliminary in vitro study of two epigenetic drugs against GOS-3 glioblastoma cells. Methods: We used (1) panobinostat, a histone deacetylase inhibitor, and (2) 3-deazaneplanocin-A (DZ-Nep), an inhibitor of enhancer of zeste homolog 2 (EZH2) (enzyme of the polycomb repressor complex 2, polycomb group of proteins that trimethylate lysine 27 of histone 3-H3K27 me3-), as treatments that might modulate the PI3K pathway, affected in GOS-3 cells due to PTEN haploinsufficiency. The glioblastoma cell line GOS-3 was exposed to DZ-Nep and panobinostat treatments, separately and in combination, over a period of 2 days, after which cell migration, clonogenicity, and molecular expression characterization assays were performed. Results: Panobinostat alone or the combination of panobinostat plus DZ-Nep inhibited clonogenicity, metastasis, angiogenesis, epithelial–mesenchymal transition, and entry in the S phase of the cell cycle and induced apoptosis in GOS-3 glioblastoma cells. On the contrary, DZ-Nep inhibited cell migration (single treatment) and O(6)-methylguanine-DNA methyltransferase expression (DZ-Nep or double treatment). Conclusion: Panobinostat alone or the combination of panobinostat and DZ-Nep induce apoptosis and inhibit in vitro tumorigenesis and metastasis in GOS-3 glioblastoma cell lines.